
 1

A Quick Guide to Programs in the ARPS System

DRAFT 0.1

First written: 5/30/2002 by Ming Xue to match ARPS Version 5.0.0IHOP_2

Updated on 6/25/2002

Conventions of notation:

Use CAPITAL letters for the names of PROGRAMS, such as ARPS and ADAS.
Use italic for commands and file and directory names, such as bin/arps < arps.input.

Program: ARPS
Function:

ARPS forward prediction model. Sometimes it also refers to the entire
ARPS system, including all supporting packages.

Applications: Starting from an initiation condition, it performs forward time integration
of the governing equations of the atmosphere and produces a forecast of the
future state of the atmosphere.
The initial condition can be specified by using analytical functions with
parameters specified in the input file, by using a single sounding, or by
reading in ARPS history or restart format data.

Location of
source code

src/arps
src/arps_mp for MPI job

Compilation
and Linking:

makearps arps for a single-processor executable.

makearps –p arps for a shared-memory multi-processor executable. It
requires a Fortran 90 compiler capable of automatically parallelizing the
source codes. The compile typically perform a preprocessing step that
inserts loop-level parallelization directives (OpenMP is most common) into
the source code first.

makearps arps_mpi for a distributed memory multi-processor executable. It
requires that MPI is set up properly on the system. makearps makes some
assumptions in makearps the location of the MPI library. Check the
correctness of the assumptions for the particular platform you are using.

makearps takes additional option parameters, with –p given above as an
example. Enter makearps –help for additional information on the options.

Execution: bin/arps < input/arps.input >! arps.output for non-MPI runs.

To use multiple shared memory processors, certain environmental

 2

parameters usually need to be set first, telling the arps job how many
processors to use. On SGI system, for example, it is setenv
MP_SET_NUMTHREADS n, where n is the number of processors to use.

To run the MPI version of ARPS on most systems, enter

mpirun –np n_proc bin/arps_mpi < input/arps.input >! arps.output.

On some other systems, mpirun command and system can be different.
prun is another example.

For the MPI run that initializes from an input data set, program splitfiles
needs to be run first. After arps_mpi is run, joinfiles program is run to join
together files written out by different processors.

Platform
supported:

All common Unix platforms.

External
package/library
required

MPI library is required for distributed-memory parallel runs.

HDF Version 4.0 library required when –io hdf option is invoked for
makearps. ARPS will then be able to read and write HDF format history
dumps and boundary condition files. Option –io hdf is currently the default.
If –io nohdf is used, the link to HDF library is bypassed, as a result, no
HDF format output will be produced if HDF dump option is chosen (in
arps.input). HDF format is becoming the preferred data format for ARPS
because it is portable cross platforms and contains two levels to building
compression so that the file size is typical ¼ of the size of the binary
format. Please note that HDF 5.0 is not compatible with HDF 4.0 so use
HDF 4.0 only. HDF library is freely available from NCSA
(http://www.ncas.uiuc.edu).

NetCDF – this I/O format is currently unsupported due to lack of use.

Vis5D – history dumps in Vis5D format can be directly written by ARPS
by including –io v5d option for makearps. It requires a C compiler.

GrADS – ARPS can directly write output in GrADS format without the
need for any external library. No additional makearps option is necessary.

GRIB – GRIB format history dump can be written by ARPS without
external library. Currently, ARPS GRIB files are not portable across big
endian (SGI, IBM, SUN, HP and Cray vector machines) and little endian
machines (Alpha and Intel processor machines).

 3

Program: ARPSAGR
Function:

ARPS with adaptive grid refinement driver for adaptive grid two-way
interactive nesting.

Applications: Run ARPS with two-way interactive nesting.

Location of
source code:

src/arpsagr and src/arps

Compilation
and Linking:

makearps arpsagr

Execution: bin/arpsagr < input/arps.input > arps.output

Platform
supported:

All common Unix platforms.
Distributed-memory parallelization is now supported.

External
package/library
required

Same as ARPS.

Program: SPLITFILES
Function:

Split all binary format input files used by ARPS into individual patches to
be read by individual processors by MPI run of ARPS.

Applications: Data preparation step for arps_mpi job.

Location of
source code:

src/arps_mp.

Compilation
and Linking:

makearps splitfiles

Execution: bin/splitfiles < input/arps.input > arps.output

Platform
supported:

All common Unix platforms.

External
package/library
required

None.

Program: JOINFILE, JOINFILES
Function:

Join binary format output files written by individual processors by MPI run
of ARPS into single pieces for the entire model domain.

 4

Applications: Post-processing step for ARPS MPI job arps_mpi.

Location of
source code:

src/arps_mp

Compilation
and Linking:

makearps joinfiles
makearps joinfile

Execution: bin/joinfiles < input/arps.input > joinfiles.output
bin/joinfile < ??

Platform
supported:

All common Unix platforms.

External
package/library
required

None.

Program: SPLITHDF
Function:

Split all HDF format input files used by ARPS into individual patches to be
read by individual processors by MPI run of ARPS.

Applications: Data preparation step for arps_mpi job when input data are in HDF format.

Location of
source code:

src/arps_mp.

Compilation
and Linking:

makearps splithdf

Execution: bin/splithdf < input/arps.input > splithdf.output

Platform
supported:

All common Unix platforms.

External
package/library
required

HDF 4.0 library.

Program: JOINHDF
Function:

Join HDF format output files written by individual processors by MPI run
of ARPS into single pieces for the entire model domain.

Applications: Post-processing step for ARPS MPI job arps_mpi that writes HDF format
output.

Location of
source code:

src/arps_mp

 5

Compilation
and Linking:

makearps joinhdf

Execution: bin/joinhdf < input/arps.input > joinhdf.output

Platform
supported:

All common Unix platforms.

External
package/library
required

HDF 4.0 library.

Program: JOINBIN2HDF
Function:

Join binrary format history output files written by individual processors by
MPI run of ARPS into single pieces for the entire model domain and write
them in HDF format

Applications: Post-processing step for ARPS MPI job arps_mpi that writes HDF format
output.

Location of
source code:

src/arps_mp

Compilation
and Linking:

makearps joinbin2hdf

Execution: bin/joinbin2hdf < input/arps.input > joinbin2hdf.output

Platform
supported:

All common Unix platforms.

External
package/library
required

HDF 4.0 library.

Program: ADAS
Function:

ARPS Data Analysis System – a system that analyzes observational data
onto the ARPS grid.

Applications: The 3D analysis can be used for diagnostic studies, model initialization and
for providing model boundary conditions in the case of simulation (not true
forecast). The output data is in ARPS history format which can be directly
read by ARPS and many other ARPS programs including ARPSPLT.

 6

Location of
source code

src/adas

Some include files in include directory and some ARPS subroutines in
src/arps are also used. This is similar for many other programs in ARPS
package.

Compilation
and Linking:

makearps adas for a single-processor executable.

makearps –p adas for a shared-memory multi-processor executable.

Execution: bin/adas < input/arps.input > adas.output

ADAS shares an input file with ARPS.

Platform
supported:

All common Unix platforms.

External
package/library
required

Necessary libraries, such as HDF, for data I/O.

Program: ARPSTRN

Function:

Prepare a terrain data file on the ARPS grid for use by ARPS and other
programs that need to set up the ARPS grid.

Applications: It reads in one of several terrain data sets and interpolates the data to the
ARPS grid. Smoothing is optionally applied to the interpolated terrain field
to remove 2 grid-spacing features. The field is written out into a file.

Location of
source code

src/arpstrn

Compilation
and Linking:

makearps arpstrn Compile without linking to ZXPLOT graphics library.
No graphic output will be generated by the program.

makearps –zxncar arpstrn Compile and link with ZXPLOT and NCAR
graphics program to produce at the same time a color contour plot of the
terrain field in meta file format.

makearps –zxpost arpstrn Compile and link with ZXPLOT graphics
program to produce at the same time a color contour plot of the terrain field
in Postscript format.

Execution: bin/arpstrn < input/arpstrn.input >! arpstrn.output

 7

Currently 5min and 30 second global, and 3-second North American
(covers continental US and Alaska) data sets are supported. When using 3
and 30-second data sets, the data will be directly downloaded from the
USGS ftp server (ftp://edcftp.cr.usgs.gov) and the CAPS ftp server
(ftp.caps.ou.edu), respectively. Make sure your computer have FTP access
to the internet and network speed is reasonably fast, and you need to set up
a .netrc file in your home directory for the ftp to work. See arpstrn.input
for more details.

Platform
supported:

All common Unix platforms.

External
package/library
required

ZXPLOT and NCAR graphics libraries when –zxncar option is included for
makearps.

Program: MERGETRN

Function:

To create a terrain file with gradual transition to another terrain field in a
boundary zone.

It reads in two ARPS terrain data files, interpolates the first terrain field to
the grid of the second field when necessary, and generates a new terrain
field that is same as the second one except in the lateral boundary zone of
specified width, where the terrain transitions from that of the second file at
the interior of the boundary to that of the first one at the domain boundary.

Applications: Typically used to ensure that the high-resolution terrain generated for
nested grid matches that of the coarse grid at the nesting boundary and that
the transition from coarse grid to fine grid is gradual.

This function can also be realized in EXT2ARPS and ARPSINTRP
programs, in which the fine-grid terrain is merged with that of the coarse
grid before interpolation.

Location of
source code

src/arpstrn

Compilation
and Linking:

makearps mergetrn

Execution: bin/mergetrn.input < input/mergetrn.input >! mergetrn.output

Platform
supported:

All common Unix platforms.

 8

External
package/library
required

ZXPLOT library.

Other libraries needed for the choice of data I/O format.

Program: EXT2ARPS

Function:

Read in gridded data from external models and interpolate the fields onto
the ARPS grid. Write out the fields on the ARPS grid in a standard ARPS
history dump format and/or the external boundary condition format.

Applications: Used to provide analysis background and/or forecast lateral boundary
conditions if the ARPS analysis background is from an external model
and/or the ARPS is nested inside an external model.

Currently EXT2ARPS handles NCEP ETA, RUC, AVN gridded data in
various formats and coordinates. NCAR/NCEP global reanalysis data is
also loosely supported.

Location of
source code

src/ext2arps

Compilation
and Linking:

makearps ext2arps

Execution: bin/ext2arps < input/arps.input > ext2arps.output

Platform
supported:

All common Unix platforms.

External
package/library
required

Libraries needed by specific choice of history I/O format.

Program: ARPSINTRP

Function:

Read in ARPS gridded data set(s) in history format, and interpolate the
fields to another (output) ARPS grid, and write them out in one of the
history dump formats for this output grid.

Applications: Mostly used for generating initial (or background for initial condition
analysis) and boundary condition files for one-way nested grid runs inside a
coarser ARPS grid. In this case, the new output grid has a higher spatial
resolution. The output grid should be no bigger than the input grid.

 9

The input and output grids have to have the same map projections, but do
not have to have the same vertical coordinates. The fine grid can use
higher-resolution terrain or flat terrain. The latter situation is useful when
one wants to examine the fields on the ARPS terrain-following grid using
software, such as GrADS and Vis5D, that does not support non-rectangular
grid. For such a purpose, it is best to choose the option that directly extends
surface values below ground level.

This program can also be used to sub-sample the ARPS output on a coarser
resolution and/or smaller grid for easier post-processing, especially when
the original grid is very large.

When running ARPSINTRP, an terrain merge option is available, with
which the terrain of the output (typically finer resolution) grid is ‘merged’
with that of the input (typically coarser resolution) grid, in a way similar to
what is done in MERGETRN.

Location of
source code

src/arpsintrp

Compilation
and Linking:

makearps arpsintrp

Execution: bin/arpsintrp < arpsintrp.input >! arpsintrp.output

Platform
supported:

All common Unix platforms.

External
package/library
required

Libraries needed for reading and/or writing special format history files.

Program: ARPSTINTRP

Function:

Read in ARPS history format data at two different times and interpolates
them to a time between the two. The output is written out into another
history format file. It is assumed that both input data are on the same grid.

Applications: Mostly used to provide a background field for analysis at times when
output used for the analysis background (e.g., ETA model output) is not
available.

Location of
source code

src/arpstintrp

Compilation
and Linking:

makearps arpstintrp

 10

Execution: bin/arpstrinp < input/arpstintrp.input >! arpstintrp.output

Platform
supported:

All common Unix platforms.

External
package/library
required

Libraries required by the specific history data format.

Program: ARPSPLT

Function:

Vector-based plotting program for processing ARPS history-format data.

Applications: Generates contour and vector plots of 2D cross sections and vertical
profiles. The graphical output is either in NCAR graphics meta file format
or Postscript format.

Location of
source code

src/arpsplt

Compilation
and Linking:

makearps arpspltncar links with ZXPLOT library and NCAR graphics
low-level routines to generate NCAR graphics metafile file.

makearps arpspltpost links with ZXPLOT library to generate

–p option can be included for the executable to run on shared-memory
multi-processors. This program does not support distributed-memory multi-
processing, yet.

Execution: bin/arpspltncar < input/arpsplt.input >! arpsplt.output

bin/arpspltpost < input/arpsplt.input >! arpsplt.output

Necessary –io option should be included when processing special format
(e.g., -io hdf) history data.

Platform
supported:

All common Unix platforms.

External
package/library
required

ZXPLOT graphics library (see http://www.caps.ou.edu/ZXPLOT). The
object code libraries for common Unix platforms are available at
ftp://ftp.caps.ou.edu/pub/zxplot3.

NCAR graphics library with arpspltncar. NCAR Graphics is freely

 11

available from http://ngwww.ucar.edu/ngdoc/ng/.

Other libraries needed for specific history dump format.

Program: PLTGRID

Function:

Plot a grid map and nested grid boxes given the grid configuration
parameters, including the central longitude and latitude, map projection and
grid sizes.

Applications: To help configure the model domains or a quick look at the model grid
given the configuration parameters.

Location of
source code

src/arpsplt

Compilation
and Linking:

makearps –zxncar pltgrid or
makearps –zxpost pltgrid

Execution: bin/pltgrid < input/pltgrid.input

Platform
supported:

All common Unix platforms.

External
package/library
required

Need ZXPLOT graphics library with –zxpost option and both ZXPLOT and
NCAR graphics libraries with –zxncar option.

Program: ARPSDIFF

Function:

Reads in two sets of ARPS history format data, calculate the difference
fields and write out the difference fields into a file in the ARPS history
dump format. The two data sets can be on different grids. The ‘verification’
grid data are interpolated to the ‘forecast’ grid first before the differences
are calculated and the output will be on the forecast grid. If the two grids
are the same, no interpolation will be performed.

Applications: For comparing two sets of ARPS history format data or for ‘verifying’ one
set of ARPS fields against the other (say analysis).
It can be used to find the difference, if any, between the outputs of two
ARPS runs.

 12

Location of
source code

src/arpsdiff

Compilation
and Linking:

makearps arpsdiff

Execution: bin/arpsdiff < input/arpsdiff.input > arpsdiff.output

Platform
supported:

All common Unix platforms.

External
package/library
required

Libraries required by the specific history data format.

Program: ARPSSFC

Function: Read in soil type, vegetation type and vegetation fraction data files and

construct a set of surface and vegetation characteristics fields for the ARPS
grid. ARPSSFC and ARPS soil models supports up to 4 different soil types
in each grid cell, each caries its own percentage.

Applications:

Prepare land use/land cover (or surface and vegetation) characteristics data
file to be used by ARPS soil model.

Location of
source code

src/arpssfc

Compilation
and Linking:

makearps arpssfc
makearps –ncarg arpssfc

Execution: bin/arpssfc < input/arpssfc.input > arpssfc.output

Platform
supported:

All common Unix platforms.

External
package/library
required

NCAR graphics library when –ncarg option is included with makearps.

Program: ARPSSOIL

Function: Read in ARPS initial condition data (in history format) and, for the API

case, the precipitation data for a period proceeding the initial time in the
API case, and creates and writes out an initial condition file for ARPS soil
model.

 13

Applications:

Prepare an initial condition file for the ARPS soil model, when such initial
conditions are based on offsets from surface atmospheric conditions and the
soil moisture content can be derived using API (antecedent precipitation
index) method.

This program may not be needed when the soil model is initialized by other
means, such as interpolating from the soil model state of another model.
The soil model variables can be carried in the history file.

Location of
source code

src/arpssoil

Compilation
and Linking:

makearps arpssoil

Execution: bin/arpssoil < input/arpssoil.input >! arpssoil.input

Platform
supported:

All common Unix platforms.

External
package/library
required

Libraries required by your specific choice of history data format.

Program: ARPSCVT

Function:

Convert ARPS history dumps among ARPS supported formats.

Applications: This program can be used to convert the history dump from ARPS into
other formats for various purposes. E.g., it can convert a set of history
dumps into one Vis5D file for visualization, or Grads format for display.
While ARPS can output data in Vis5D or GrADS format directly but it is
not recommended because most other programs expect data at individual
times.

Location of
source code

src/arpscvt

Compilation
and Linking:

makearps –io io_options arpscvt

io_options can be hdf and v5d.

Execution: bin/arpscvt < arpscvt.input >! arpscvt.output

Platform
supported:

All common Unix platforms.

 14

External
package/library
required

Libraries required by your specific choice of history data format.

Need to include –io v5d option for makearps in order to write Vis5D format
data.

Program: ARPSEXTSND

Function:

Extract columns (profiles) from ARPS history dumps, and write out these
profiles in a text format.

Applications: The program can be used to extract profiles for plotting skew-T diagrams
using program SKEWT.

Location of
source code

src/arpsextsnd

Compilation
and Linking:

makearps arpsextsnd

Execution:

Platform
supported:

All common Unix platforms.

External
package/library
required

Libraries required by your specific choice of history data format.

Program: ARPSENSIC, ARPSENSBC

Function:

Generate perturbed initial/boundary conditions for ARPS ensemble
forecast, using the SLAF (Scaled Lagged Average Forecast) or the BGM
(Breeding Fast Growing Mode) method.

It reads in three sets of data files in ARPS history format and derive
perturbations from the first two and add/subtract the perturbation to the
third to generate perturbed initial conditions/boundary conditions.

Applications: For creating initial and boundary conditions for ARPS ensemble members.

Location of
source code

src/arpsens

Compilation
and Linking:

makearps arpsensic
makearps arpsensbc

Execution: bin/arpsensinc < input/arpsensic.input > arpsensbc.output
bin/arpsensnc < input/arpsensbc.input > arpsensbc.output

 15

Platform
supported:

All common Unix platforms.

External
package/library
required

Libraries needed by specific choice of history I/O format.

Program: ARPSENSCV

Function:

Reads in a series of ARPS history dumps and generate ensemble forecast
products, and write the 2D fields out for plotting.

Applications: Used to process ensemble forecast output.

Location of
source code

src/arpsens

Compilation
and Linking:

makearps arpsenscv

Execution: bin/arpsenscv < input/arpsencv.input > arpsenscv.output

Platform
supported:

All common Unix platforms.

External
package/library
required

Libraries needed by specific choice of history I/O format.

Program: ARPSVERIF

Function:

Verifies ARPS forecast against point observations and gridded fields.

Applications: Used for objective forecast verification.

Location of
source code

src/arpsverif

Compilation
and Linking:

Execution:

 16

Platform
supported:

All common Unix platforms.

External
package/library
required

Program: F77TOF90

Function:

Convert Fortran 77 code into the Fortran 90 free form and stylize the code
to conform to the ARPS Fortran 90 coding standard.

Applications: Used to convert F77 ARPS 4.5.x into F90 ARPS 5.0.

Location of
source code

src/f77tof90

Compilation
and Linking:

f90 –o bin/f77tof90 src/f77tof90

Execution: /bin/ls *.f > f77_filelist ; bin/f77tof90 < f77_filelist

Platform
supported:

All common Unix platforms.

External
package/library
required

None

Program: 88D2ARPS

Function:

Read in WSR-88D Level-II radar data and remap (interpolate) to the ARPS
grid, and write out data in a format usable by ADAS

Applications: Used to prepare Level-II radar data for ADAS.

Location of
source code

src/88d2arps

Compilation
and Linking:

makearps 88d2arps_a2

Execution: bin/88d2arps –options

Platform
supported:

Tested on Sun, SGI and Linux.

 17

External
package/library
required

Requires a2io and tpio libraries which are currently not freely distributed.

Program: NIDS2ARPS

Function:

Reads WSR-88D Level-III (NIDS) data and remap them to the ARPS grid
for ingest into ADAS.

Applications: Used to prepare Level-III (NIDS) radar data for ADAS.

Location of
source code:

src/88d2arps

Compilation
and Linking:

makearps nids2arps

Execution: nids2arps -options

Platform
supported:

All common Unix platforms.

External
package/library
required

None.

Program: ARPSREAD

Function:

A template program for reading ARPS history format data.

Applications: An example for reading ARPS history format data.

Location of
source code:

src/arps

Compilation
and Linking:

makearps arpsread

Execution: bin/arpsread < input/arpsread.input > arpsread.output

Platform
supported:

All common Unix platforms.

External
package/library
required

Libraries needed by specific choice of history I/O format.

 18

Program: SKEWT

Function:

Applications:

Location of
source code:

src/skewt

Compilation
and Linking:

Execution:

Platform
supported:

Unix platforms that supports command line argument input in Fortran.

External
package/library
required

Program: ARPSASSIM

Function:

ARPS Themodynamic retrieval package.

Applications: For retrieval temperature and pressure fields when wind fields and their
time tendencies are known. The latter are usually obtained from single or
dual Doppler radar retrieval packages.

Location of
source code:

src/arpsassim

Compilation
and Linking:

makearps arpsassim

Execution:

Platform
supported:

All common Unix platforms.

External
package/library
required

Data I/O libraries based on options chosen.

Program: A3DVAR

 19

Function:

Perform objective analysis using three-dimensional variational analysis
scheme (under development).

Applications: To obtain a best estimate of the current state of the atmospheric to serve as
the initial condition for forward prediction.

Location of
source code:

src/a3dvar

Compilation
and Linking:

makearps a3dvar

Execution: bin/a3dvar < input/a3dvar.input > a3dvar.output

Platform
supported:

All common Unix platforms.
Distributed-memory parallelization is currently not yet supported.

External
package/library
required

Necessary I/O libraries.

Program: ARPSADJ
Function:

Applications:

Location of
source code

Compilation
and Linking:

Execution:

Platform
supported:

All common Unix platforms.

External
package/library
required

Program: MCI2ARPS
Function:

Reads GOES satellite data in GEMPAK format, remap the data to the
ARPS grid to be ingested by ADAS.

Applications: Prepare data for use by cloud analysis procedure in ADAS.

 20

Location of
source code:

src/mci2arps

Compilation
and Linking:

makearps mci2arps

Execution: mci2arps ????

Platform
supported:

All common Unix platforms. ???

External
package/library
required

Program: TESTMKARPS
Function:

Test the compilation and link of most ARPS programs using makearps.

Applications: To make sure that programs in the ARPS package compile on various
platforms.

Location of
source code:

scripts

Compilation
and Linking:

Direct execution of the scripts.

Execution: scripts/testmkarps[–opts_makearps “makearps_options”]
The options used by makearps can be included as “makearps_options”.

Platform
supported:

All common Unix platforms.

External
package/library
required

Depending on the program being tests.

Program: Standard test scripts in Perl
Function:

Run the standard ARPS test suite

Applications: Test variously ARPS programs using automated procedures

Location of
source code:

scripts

 21

Compilation
and Linking:

Direct execution of the scripts.

Execution: scripts/testarps.pl -all
Run all tests. Individual tests can be run with appropriate options. See
inside the script.

Platform
supported:

All common Unix platforms.

External
package/library
required

Depending on the tests

Program:
Function:

Applications:

Location of
source code:

Compilation
and Linking:

Execution:

Platform
supported:

All common Unix platforms.

External
package/library
required

