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2.4. Multi-Dimensional Diffusion Problems 
 
Reference:  Tannehill et al 4.3.9-4.2.11. 

C.F. Fletcher 8.1, 8.2, 8.5. 
   
 
For multi-dimensional (MD) problems, one can use 
 
1)  Direct extension of 1-D operators. It's the most straightforward method but may not have the best stability 

property. There can be problems with neglecting cross directive terms in the Taylor expansion. 
 
2)  Direction splitting method – we build up a MD problem by successive 1-D passes through the grid in alternating 

coordinate directions. Each time solving a 1-D problem. 
 
3)  Full MD methods designed specifically for MD problems. 
 
We will only discuss the first two methods. 
 
 
 
Consider 2-D diffusion equation on a regular x-y domain: 
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2.4.1. Direct extension of FTCS method 
 

[ ]n n n
t ij xx ij yy iju K u uδ δ δ+ = +        (2) 

 
It is consistent and 2 2( , , )O t x yτ = ∆ ∆ ∆ . 
 
We can find out (show it for yourself), using Neumann stability analysis (assuming ( )n n i kx ly

ij ku U eλ += ) that the 
stability condition is 
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For ∆x = ∆y, 
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∆ ≤ , which is twice as restrictive as that for 1-D problem! 

 
 

2.4.2. Direct extension of general method 
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Reorganizing  
 

1[1 ( )] [1 ( )]n n
xx yy ij xx yy ijtK u tK uα δ δ α δ δ+− ∆ + = − ∆ +    (5) 
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One can find out that the stability condition is 
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K x yα

−
⎛ ⎞

∆ ≤ +⎜ ⎟− ∆ ∆⎝ ⎠
  for 0 1/ 2α≤ <  (again more restrictive than the  

 
corresponding 1-D case), and unconditionally stable for1 1/ 2α≥ ≥ . 
 
When 0α ≠ , the above scheme is implicit, as in the 1-D case.  
 
This system of equations is more difficult to solve, however, due to the involvement of unknowns at more than 3 
grid points – in fact, five grid points (five unknown ) are involved for this 2-D problem. This can be more clearly 
seen if (5) is rewritten into the following form: 
 

1 1 1 1 1
, 1 , 1 , 1, 1,
n n n n n n
i j i j i j i j i j ijau bu cu au bu d+ + + + +

− + + −+ + + + =      (6) 
 
assuming K is constant and ∆x=∆y in (5). 
 
 
In matrix form, we can write (5) as 
 

1{[ ] [ ]} {[ ] (1 )[ ]}n nI A U I A Uα α+− = − −      (7) 
 
where [I] is an identity matrix and [A] is block tridiagonal. U is a vector consisting of u at all grid points. 
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This system cannot be solved as efficiently as the tridiagonal system from 1-D problem. Similar system arises from 
the discretization of elliptic equation 2u F∇ = . We will discuss methods for solving it at a later time. 
 

2.4.3. Directional Splitting Method 
 
Goal: We look for ways to avoid having to solve the block tridiagonal matrix – we want to get back to a single 
tridiagonal matrix.  
 

a) Alternating Direction Implicit (ADI) method 
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One of the best known way of doing this is the alternating direction implicit (ADI) scheme due to Peaceman and 
Rachford.  
 
The basic idea is to write the single full time step as a sum of two half steps, each representing a single coordinate 
direction: 
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 1/ 2[1 ] [1 )]n n

xx ij yy ijs u s uδ δ+− = +       (9a) 
1 1/ 2[1 ] [1 )]n n

yy ij xx ijs u s uδ δ+ +− = +       (9b) 
 
where s = K∆t/2.  
 
The left hand side of the equations can be written in the form of 
 

1/ 2 1/ 2 1/ 2
1 1

n n n
i i i i i iAu Bu C u+ + +

− ++ +   and 1 1 1
1 1

n n n
j j j j j jA u B u C u+ + +

− ++ +    
 
therefore they form two systems of tridiagonal equations. (9a) is first solved for all j indices then (9b) is solved for 
all i indices. 
 
Stability:  The amplification factor of each full step is simply the product of the amplification factor of the two 
individual steps. 
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We can see  
 

1/ 2n n
au uλ+ =  

1 1/ 2n n
bu uλ+ +=  

 
therefore 1n n n

a bu u uλ λ λ+ = = .  
 
Stable if| | | | 1a bλ λ λ= ≤ . 
 
We can easily show that  
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therefore | | 1λ ≤  for all µ!   The scheme is absolutely stable. 
 
Comment: ADI is unconditionally stable for the 2D diffusion equation, but conditionally stable in 3D. The 
condition is 2 2 2/ 1, / 1 and / 1x y zK t x K t y K t z∆ ∆ ≤ ∆ ∆ ≤ ∆ ∆ ≤ . 
 
To overcome the conditionally stability problem with the above 3D version of ADI, Douglas and Gunn (1964) 
developed a general method for deriving ADI that are unconditionally stable for all dimensions. The method is 
called approximate factorization. 
This is discussed in section 4.2.10 of Tennehill or section 8.2.2 of Fletcher. 
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b) Local 1-D or Fractional Step Method 
 
There are many ways to split MD problems into a series of 1D problems. So far, we have been splitting the FDE. 
One can also split the PDE, into a pair of equations for 2D case, which each of them being a local 1D equation. 
This method was developed by Soviet mathematicians in the early seventies (see Yanenko 1971). 
 
In a sense, the method splits equation 
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into two equations: 
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They can be solved using an explicit scheme: 
 

1/ 2 (1 )n n
ij x xx iju K t uδ+ = + ∆  

1 1/ 2(1 )n n
ij y yy iju K t uδ+ += + ∆ . 

 
When ∆x = ∆y this scheme is stable for 1/ 2µ ≤ , which is only half as restrictive as our full one-step 2-D explicit 
scheme (FTCS which has 1/ 4µ ≤ ). 
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When the implicit Crank-Nicolson scheme is used to solve those two equations, i.e.,  
 

1/ 2(1 0.5 ) (1 0.5 )n n
x xx ij x xx ijK t u K t uδ δ+− ∆ = + ∆  

1 1/ 2(1 0.5 ) (1 0.5 )n n
y yy ij y yy ijK t u K t uδ δ+ +− ∆ = + ∆ . 

 
This scheme is stable for all µ, and we solve two tridiagonal systems per time step.  
 
In practice, we often use the xyyx ordering to avoid directional bias. 
 
The direction splitting method can also be applied to hyperbolic equations, which is the subject of our next chapter. 


