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Chapter 4. Nonlinear Hyperbolic Problems 
 

4.4 System of Hyperbolic Equations – Shallow Water Equation model 
 
Ref: Chapter IV of Mesinger and Arakawa (1976) GARP Report 
 

4.4.1. Introduction 
 
It is assumed that you are familiar with the shallow water equations and associated theories. If not, consult Holton 
or Haltiner and Williams book. 
 
The following is a set of linear 1D shallow water equations: 
 

' ' ' 0u uu
t x x

φ∂ ∂ ∂
+ + =

∂ ∂ ∂
       (21a) 

' ' ' 0uu
t x x

φ φ∂ ∂ ∂
+ + Φ =

∂ ∂ ∂
       (21b) 

 
u   = constant base state flow 
Φ = gH = g × mean depth of the water = constant 
u  u'  = perturbation velocity 
φ = gh'  = perturbation geopotential height 

 
Issues to consider with respect to numerical solution 
 



 4-2

1) More than 1 variable 
2) Equations coupled 
3) Can support multiple physical modes 
4) There are more possibilities of grid layout (see figure below) 
 

 
 

4.4.2. The differential solution 
 
Performing standard analysis by assuming  
 

exp[ ( )]i kx tψ ω= Ψ −        (22) 
 
gives   ( )k uω = ± Φ        (23) 
 
which is called the dispersion relation. 
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From (23)  
 

  c u
k
ω

= = ± Φ . 

 
In the phase speed, there are slow mode represented by u  (advection) and fast mode given by Φ  (surface gravity 
waves). Since c is constant, the waves are non-dispersive. 
 
Group velocity  

  gc u
k
ω∂

= = ± Φ
∂

   

represents the speed of wave energy propagation. 
 
 
What about the characteristics (we have seen this before – see example problem given at the end of Chapter 1).  
Make use of the auxiliary equations, we have the following equations in matrix form: 
 
 

 

1 0 1 0
0 1 0

0 0
0 0

t

x

t

x

uu
uu

dt dx du
dt dx d

φ
φ φ

⎛ ⎞⎡ ⎤ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥Φ ⎜ ⎟ ⎜ ⎟⎢ ⎥ =
⎜ ⎟ ⎜ ⎟⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠

      (24) 

 
Setting the determinant of the coefficient matrix to zero gives 
 



 4-4

  
2

22 ( ) 0dx dxu u
dt dt

⎛ ⎞ − + − Φ =⎜ ⎟
⎝ ⎠

 

  

  dx u
dt

= ± Φ  

 
which is the characteristics equations.  
 
The compatibility equations can be found to be  
 

  constantu φ
± =

Φ
along  dx u

dt
= ± Φ .    (25) 

 
(25) can be rewritten as 
 

( ) 0u u
t x

∂ ∂ φ
∂ ∂

⎛ ⎞⎡ ⎤+ + Φ + =⎜ ⎟⎢ ⎥ Φ⎣ ⎦⎝ ⎠
     (26a) 

( ) 0u u
t x

∂ ∂ φ
∂ ∂

⎛ ⎞⎡ ⎤+ − Φ − =⎜ ⎟⎢ ⎥ Φ⎣ ⎦⎝ ⎠
     (26b) 

 
which are two decoupled equations describing wave disturbances 'advected' by the respective propagation speeds.  

/u φ± Φ are known as the Riemann invariants, as said before. 
 
Equations (26) can also be obtained using matrix method (see Chapter 1). 
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4.4.3. Discretization for the Shallow Water Equations 
 

4.4.3.1. Forward-backward scheme 
 
We know that FTCS is unstable for pure advection equations, and this is also true to the shallow water equations.  
 
But, we can obtain a stable scheme if we use backward scheme for the second equation. Let's look at the simper 
case of u =0, i.e., there is not mean flow: 
 

  
2

1
2

0

0

n
t x

n
t x

u

u

δ δ φ

δ φ δ

+

+
+

+ =

+ Φ =

       (27) 

 
Since forward scheme is used for the first eq. and backward scheme used for the second, the overall scheme is 
called forward-backward scheme. We can show that it is conditionally stable. 
 
 
Stability Analysis 
 
Assume that 
 

exp( )

exp( )

n n
j j

n n
j j

u A ikx

B ikx

λ

φ λ

=

=
       (28) 

 
Note here A and B could be complex so as to account for possible phase difference between u and φ. 
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Plug (28) into (27)  
 

1

1 1

( ) ( ) 0
2

( ) ( ) 0
2

n n n ik x ik x

n n n ik x ik x

tA B e e
x

tB A e e
x

λ λ λ

λ λ λ

+ ∆ − ∆

+ + ∆ − ∆

∆
− + − =

∆
∆

− + Φ − =
∆

    (29) 

 
or 

( 1) sin( ) 0

( 1) sin( ) 0

tA iB k x
x

tB i A k x
x

λ

λ λ

∆
− + ∆ =

∆
∆

− + Φ ∆ =
∆

     (30) 

 
or 

01 sin( )

sin( ) 1 0

t Ai k x
x

ti k x B
x

λ

λ λ

∆⎛ ⎞⎛ ⎞ ⎛ ⎞− ∆⎜ ⎟∆ ⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟∆⎜ ⎟⎜ ⎟ ⎜ ⎟Φ ∆ −⎜ ⎟⎝ ⎠ ⎝ ⎠∆⎝ ⎠

   (30') 

 
(30') is a simultaneous linear system of equations for A and B. It has non-trivial solutions if and only if the 
determinant of the coefficient matrix equals to zero.  
 
  2 2[2 ] 1 0aλ λ− − Φ + =  [where / sin( )a t x k x= ∆ ∆ ∆ ] 
 

2 2 22 (2 ) 4
2

a a
λ±

Φ − ± − Φ −
=      (31) 
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If the radical is negative, then| | 1λ± ≡ . I.e., if 
 

2 2(2 ) 4a− Φ ≤  
2| 2 | 2a− Φ ≤  

22 2 2a− ≤ − Φ ≤  
 

22 2a− Φ ≤  is always satisfied, in addition, 
 

2 4aΦ ≤    
 

2
sin( )

xt
k x

∆
∆ ≤

Φ ∆
 , for it to be valid for all k, we require  

 
2 xt ∆

∆ ≤
Φ

   or 2t
x

µ ∆ Φ
= ≤

∆
        (32) 

 
which is the stability condition!  Here Φ  is the disturbance propagation speed in the absence of base-state 
advective flow.  
 
When the mean flow is non-zero, the condition is 
 

2
| |

xt
u

∆
∆ ≤

+ Φ
. 

 
Note the factor of 2 in the condition – the use of forward-backward scheme actually allows a Courant number of 2 
to be used! This is due to the fact the backward scheme is actually a kind of 'implicit' scheme.   
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4.4.3.2. Centered-in-time (leapfrog) Center-in-Space (CTCS)  scheme 
 

2 2 2

2 2 2

0
0

t x x

t x x

u u u
u u

δ δ δ φ
δ φ δ φ δ

+ + =
+ + Φ =

 

 
(here we assume a non-staggered grid) 
 
Similar stability analysis leads to: 
 

| |
xt

u
∆

∆ ≤
+ Φ

       (33) 

 
which is twice as restrictive as that for forward-backward scheme. Also it contains a computational mode. 
 
 
 
Grid Splitting 
 
The above CTCS scheme used non-staggered grid.  
 
When using non-staggered grid for the above equations, we can run into the grid-splitting problem. We discussed 
this issue in the past. 
 
One way of avoiding grid splitting is to use staggered grid – in which different variables are located at different 
points of a grid mesh. 
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Let's stagger u and φ (h in the figure) in the following way: 
 

 
 

Our FD equation using CTCS scheme is then 
 
 

2 2

2 2

0 at u point
0 at  point

t x x

t x x

u u u
u u

δ δ δ φ
δ φ δ φ δ φ

+ + =
+ + Φ =

    (34) 

 
Note the key difference in the third term of each equation from the previous non-staggered CTCS scheme. Also the 
equations are solved at different grid point. 
 
Stability analysis will show the stability condition is  
 

| | 2
xt

u
∆

∆ ≤
+ Φ

 

 
which, for zero mean flow case, is twice as restrictive as the non-staggered version (because of the factor of 2 in 
front of phase speed Φ ). 
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However, since the pressure gradient force and velocity divergence terms are differenced over one ∆x interval, and 
these are terms responsible for the gravity wave propagation, the solution should be more accurate, since the 
effective grid spacing is half as large. 
 

4.4.3.3. Treatment of insignificant fast modes 
 
(Reading: Durran Chapter 7 – Physically insignificant fast waves) 
 
We obtained earlier the phase speed of shallow water waves: 
 
  c u gH= ±  
 
it contains two modes. The slower advective mode and the faster gravity wave (GW) mode: 
 

~ 10 /u m s  
 

~ 10 10000 ~ 200 /gH m s× for external gravity waves 
 
| |u gH for many problems. 

 
Gravity waves are not important in global coarse-resolution (effective grid spacing > 100 km) models in which the 
resolutions are usually too coarse to resolve them adequately anyway. 
 
GWs are often important for mesoscale flows. For mesoscale models, often, compressible equations are used which 
support fast sound waves – so sound wave play a similar role as the gravity waves in large scale model in limiting 
the time step size (when using explicit schemes). 
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When the fast mode is not important, we don’t want it to be the one that limits the time step size. 
 
There are in general two ways to deal with this problem – one is to treat the terms responsible for the fast modes 
implicitly, and the other uses different time step sizes for fast and slow modes  and the method is called mode 
splitting method. ARPS uses the latter to deal with fast sound waves (hence the large and small time steps, dtbig 
and dtsml you find in arps.input).  
 

4.4.4.4. Semi-implicit method  
 
Since the PGF term in u equation and the velocity divergence term in φ equation are responsible for gravity waves, 
we can treat them implicitly, so that hopefully the gravity wave mode no longer limit the time step size.  
 
Again we look at the non-staggered case: 
 

2

2 2 2
2

2 2 2

0

0

t

t x x
t

t x x

u u u

u u

δ δ δ φ

δ φ δ φ δ

+ + =

+ + Φ =
       (35) 

 
The time averages makes the scheme implicit. Since only some of the terms are treated implicitly, the scheme is 
called semi-implicit. 
 
Stability of the system – only the advective velocity u  appears in the stability condition therefore much larger time 
step can be used (see Durran 7.2.3; Mesinger and Arakawa Chapter 4 section 6). 
 
Analysis shows that the fast mode in the numerical solution is actually slowed down – i.e., there is a lagging phase 
error with this mode – it is okay if this mode is consider unimportant, like the sound waves in the atmosphere or 
the gravity waves in large-scale models. 
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Solution procedure for (35) 
 
1)  Computer φn+1 for all j by eliminating un+1 from the 2nd equation using the first: 
 

2
1 1 1 1

2 22 2
4

n n n n
j j j j

t f
x

φ φ φ φ+ + + +
− +

Φ∆ ⎡ ⎤− − + =⎣ ⎦∆
, 

 
the right hand side is known. 

 
2)  Two effectively decoupled tridiagonal system of equations have to be solved, one for even j and one for odd j 

(can lead to grid splitting). 
 
3). Once φn+1 is known, we can plug it into u equation to obtain un+1. 
 
4)  If a staggered grid is used, then only one tridiagonal system of equations has to be solved. The total amount of 

calculation is about the same as the non-staggered case since because twice any many grid points are now 
involved. 

 
5)  For 2D or 3D problems, the semi-implicit scheme results in a Helmholtz equation that can't be as easily solved 

as the 1D tridiagonal equation.  
 

Tapp and White is one of the first to use semi-implicit method in a compressible mesoscale model of the UK 
Met Office (Tapp and White 1976 QJRMS). 
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4.4.4.5. Mode-splitting Method 
 
For info on mode-splitting method for compressible model, see Klemp and Wilhemson (1978) and Durran Section 
7.3.2. 
 
Skamarock and Klemp (1982) discuss that stability issues associated with the mode-splitting methods as applied to 
compressible system of equations.  
 
References: 
 
Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. 
Atmos. Sci., 35, 1070-1096. 
 
Skamarock, W. C., and J. B. Klemp, 1992: The stability of time-split numerical methods for the hydrostatic and 
nonhydrostatic elastic equations. Mon. Wea. Rev., 120, 2109-2127.). 
 
 

4.4.4. The Arakawa Grids  
 
(p.47 in Mesinger and Arakawa 1976) 
 
Arakawa (Arakawa and Lamb 1977) introduced a variety of staggered grids when trying to find the most accurate 
method for handling geostrophic adjustment process, which we know relies on inertia gravity waves. Inertia 
gravity waves are dispersive, they disperse ageostrophic energy. 
 
To describe inertia GW, we need to include rotational effect into the shallow water equations: 
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0u hg fv
t x

∂ ∂
+ − =

∂ ∂
 

0v hg fu
t y

∂ ∂
+ + =

∂ ∂
 

0h u vH
t x y

⎛ ⎞∂ ∂ ∂
+ + =⎜ ⎟∂ ∂ ∂⎝ ⎠

 

 

For 1-D version of this problem, i.e. for 0
y

∂
=

∂
 case, the dispersion equation for the exact solution is 

 
2 2 1/ 2( )f k gHω = + . 

 
Arakawa defined 5 different grids, all of which has the same number of dependent variables per unit area – so that 
the computational time is about the same. 
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For each of the above grid, the finite difference equation can be written as  
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We want to find the numerical dispersion relations and compare them with the exact solution.  For 1-D problem, 
the dispersion relations are (note ν is our ω, d = ∆x, the time derivative terms are not differenced, i.e., remain in 
their continuous form): 
 

 
 
They are plotted in the following figure: 
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The phase speed and group velocities for each of these grids can be plotted together with the exact solution: 
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We can see that for the 1-D problem, B and C grid perform the best. 
 
A and D are not good at all. Energy of waves shorter than 4∆x propagates in the wrong direction. 
 
E is reasonable good. 
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For 2-D problem, the ω/f is plotted in the following: 
 
 
  Exact  Solution            B grid           C grid 
 

 
  
 
 
We can see C grid is closest to the exact solution given in (A), and B grid is not as good in 2-D, especially along 
the diagonal direction in the plot. 


