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25. Show that a problem {1)-—(4) with more complicated boundary conditions, say,
w0, ) = 0, «(l., 1) = k(1), can be reduced 1o a problem for a new function »
satisfying cooditions (0, ) = oL, 1) = 0, v(x, 0) = f,(x), p,(x, 0) = g,(x) but
a nonhomogeneous wave equation. Hint. Set ¥ = v + w and detennine w
suitably.

D’Alembert’s Solution
of the Wave Equation

It is interesting to note that the solution (17), Sec. 11.3, of the wave equation
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can be immediately obtained by transforming (1) in a suitable way, namely,
by introducing the new independent variables!

(2) v=ux+ct, z=x — cl.

Then # becomes a function of v and z, and the derivatives in (1) can be
expressed in terms of derivatives with respect to v and z by the use of the
chain rule in Sec. 8.7. Denoting partial derjvatives by subscripts, we see

from (2) that v, = 1 and z, = 1. For simplicity let us denote «(x. 1), as a
function of ¢ and z, by the same letter «. Then

i, = u v, + 2z, = u

- .t o,

!
Applying the chain rule to the right side and using v, = l and z, = 1 we find
u =, +w), =@, +w)o + (4, + ulz, = u, + 2“02 + u,,.
We transform the other derivative in (1) by the same procedure, finding

u, = cHau,, — 2u, + u,).

14

By inserting these two results in (1) we obtain (cf. footnote | in Appendix 3.1)
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Cbviously, the point of the present approach is that the resulting equation

1We mention that the general theory of partial differsntial equations provides a systematic way
for finding this transformation which will simplify the equation. Cf. Ref. [C14] in Appendix 1.
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Qur result shows that the two initial conditions and the boundary condi-
tions determine the solution uniquely.

The solution of the wave equation by the Laplace transformation and the
Fourier transformation will be shown in Secs. 11.13 and 11.14.

In the next section we turn to the heat equation, which is another partial
differential equation of basic importance.

Problems for Sec. 11.4

Using (6}, sketch a figure (of the type of Fig. 270 in Sec. 11.3} of the deflection
w(x, 1) of a vibrating string (length L = 1, ends fixed) starting with initial velocity
zero and the foflowing initial deflection f(x), where k is small, say, & = 0.0].

1. fix) = k sin =y 2. ftx) = kx(l — x) 3. () = ktx — x93

4. f(a) = k(x? - 1% 5. flx) = k(1 — cos 2wx) 6. flx) = ksin®my

Using the indicated transformations, solve the following equations.

7. e, =t o=y z=x+ ¥}

8. Vi = XH tu, (v=y2= xv}

9. n, — ZHW Ty, = 0 (p=y,z=x+¥»

W w,, = " fr=yv+r.2=yv—ux)}

11. My + ot 2w, =0 {o=x+y.2=2 —x)
12, u”—4nry+3un=(] (b=x+y.z=73x+3¥

Types and normal forms of linear partial differential equations. An equation of the
form

(¥) A, + EBNW + Cuyy = Flx, », b, 1, ny)

is said 10 be clliptic it AC ~ A2 > Q. parabolic if AC — B? = 0. and hyperbulic if

AC — B® < 0. (Here A, B, € may be functions of x and v, and the type of (8} may

be different in different parts of the xy-plane.)

13, Show that

Laplace’s equation 1, + «, = 0 is elliptic,

the heat equation «, = % is parabolic,

the wave equation 1, = ¢Zu__is hyperbolic,

the Tricomi equation yu , + ty, =0 is of mixed type (clliptic in the upper
half-plane and hyperbolic in the lower half-plane).

14, If the equation (8) is hyperbolic, it can be transformed (o the wormal form
w, = F*u. 2,0 0, u) by settingo = ®lx, y), z = W(x, y), where @ = canss and
¥ = const are the solutions y = yix) of the equation Ay'2 — 2By" + C =0
(cf. Ref. [CI2]). Show that in the case of the wave equation (1),

b = x + ct, ¥ =x - (1.

15. If (B} is parabolic, the substitution v = x, 2 = W(x, y), with ¥ defined as in
Prob. 14, reduces it to the normal form u,, = F*(v, z, u, u,, «,). Verify this

result for the equation u, + 2u,, + Uy = 0.

16. (Airy equation) Show that by separating variables we can obtain from the Tricomi
equation the Airy equation G" — yG = 0. (For solutions, see p. 446 of Ref. {1]
listed in Appendix 1. See aiso Review Prob. 30 for Chap. 4.}




EXAMPLE 1. Vibrating string If the inlfial deflection is tHangular
Find the solution of the wave equation (1) corresponding to the triangular initial defiection
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and initial velocity zere. {(Fig. 270 on the next pape shows fix} = w(x, 0} at the top.)

Solution. Since plx}) = 0, we have B,* = 0 in {12), and from Example | in Sec. 10.5 we see
that the B, are given by (5}, Sec. 10.5. Thus (£2} takes the form
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For plotting the graph of the solution we may use «lx, 8) = flx) ard the above imerpretation
of the 1wo functions in the representation (17). This leads 1o the graph shown in Fig. 270. 1

1t is very interesting that the solution (17) can also be obtained very quickly
by a suitable transformation of the wave equation. following an ingenious
idea by d’Alembert, which we discuss in the next section,
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Fig. 270. Solution u(x, f) in Exampie 1 for various values of  (right

part of the figure) obtained as the superpaosition of a wave traveling

fo the right (dashed) and a wave traveling o the left (left pad of
the figure)
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