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Series-Expansion Methods

Series-cxpansion methods that are potentially useful in geophysical fluid dynam-
ics include the spectral method, the pseudospectral method, and the finite-element
method. The spectral method plays a particularly important role in global atmo-
spheric models, in which the horizontal structure of the numerical solution is often
represented as a truncated series of spherical harmonics. Finite-element methods,
on the other hand, are not commonly used in multidimensional wave propagation
problems because they generally require the solution of implicit algebraic sys-

- tems and are therefore not as efficient as competing explicit methods. All of these
¢ - series-expansion methods share a common foundation that will be discussed in

the next section.

Y41 Strategies for Minimizing the Residual

Suppose F is an operator involving spatial derivatives of ¥, and that solutions are
sought to the partial differential equation

Iy B
S+ =0, a.1)

;. Subject to the initial condition v (x, ) = £ (x) and to boundary conditions at the
edges of some spatial domain S. The basic idea in all series-expansion methods

& s to approximate the spatial dependence of v as a linear combination of a finite
number of predetermined expansion functions. Let the general form of the series
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expansion be written as

N

Gla. 1) = ) anp(x), (4.2)
k-1

where @), ..., gy are predetermined expansion functions satisfying the required
boundary conditions. Then the task of solving (4.1) is transformed into a problem
of calculating the unknown cocfficients a) (1), . . ., ax (1) in a way that minimizes
the error in the approximate solution. One might hope 10 obtain solvable expres-
sions for the gy (r) by substituting (4.2} into the governing equation {4.1). For
example, if F is a linear function of 8"y /dx" with constant coefficients and the
cxpansion funclions are Fourier series, direct substitution will yield a system of
ordinary differential cquations for the evolution of the & (). Unfortunately, direct
substitution yiclds a solvable system of equations for the expansion coefficients
only when the ¢, arc eigenfunctions of the differential operalor F—direct sub-
stitution works in precisely those special cases for which analytic solutions are
available. This, of course, is a highly restrictive limitation.

In the general case where the ¢y are not eigenfunctions of F, it is impossible to
specify aj (1), ..., an(¢) such that an expression of the form {4.2) exactly satis-
fies (4.1). As an example, suppose F () = ¥ dy/dx and the expansion functions
are the Fourier components ¢; = ¢'**, —N < k < N. If this Fourier series
is substituted into (4.1), the nonlinear product in F () introduces spatial varia-
tions at wave numbers that were not present in the initial truncated series, e.g.,
F(etVry = [N 2% A 1otal of 4N + 1 equations are obtained after substitut-
ing the expansion functions into (3.1} and requiring that the coefficients of each
Fourier mode sum to zero. It is not possible to choose the 2N + 1 Fourier coeffi-
cients in the original expansion to satisfy these 4N + | equations simultaneocusly.
The best one can do is to select the expansion coefficients to minimize the error.

Since the actual error in the approximate solution ||y — ¢|| cannot be deter-
mined, the most practical way to {ry to minimize the error is to minimize the
residual,

d¢

R(¢) = 5t F(¢), (4.3}

which is the amount by which the approximate solution fails to satisfy the gov-
erning equation. Three different strategies are available for constraining the size
of the residual. Each strategy leads to a system of N coupled ordinary differen-
tial equations for the time-dependent coefficients a; (¢), . . ., an (t). This transfor-
mation of the partial differential equation into a system of ordinary differential
equations is similar 1o that which occurs in grid-point methods when the spatial
derivatives are replaced with finite differences.

One strategy for constraining the size of the residual is to pick the a; (1) to
minimize the square of the £;-norm of the residual:

(IR ()12 =j;[l‘t’(¢>(x))l2 dx.

4.1 Strategies for Minimizing the Res 4l 175

A sccpnd approach, referred to as collocation, is to require the residual to be Zero
at a discrete set of grid points:

R(¢(jAX) =0 forall j=1,.. N,

The third strategy, known as the Galerkin approximation, requires the residual to
be orthogonal to cach of the expansion functions, i.e.,

[gR(¢(x))tpk(x)dx =0 forallk=1,... N. (4.9)

Different series-expansion methods rely on one or more of the preceding ap-
proaches. The collocation Strategy is used in the pseudospectral method and in
some.ﬁnitc-elcmenl formulations, but not in the spectral method. The £;-mini-
mization and Galerkin criteria are equivalent when applied 1o a problem of the
form (4.1), and are the basis of the spectral method. The Galerkin approximation
is also used extensively in finite-element schemes,

. The equivalence of the ¢;-minimization criterion and the Galerkin approxima-
tion can be demonstrated as foliows. According to (4.3), the residual depends on
both.the instantancous values of the expansion coefficients and their time ten-
dencfe§. The expansion coefficients are determined at the outset from the initial
CO.ndl-llOHS and are known at the beginning of any subsequent integration step. The
criteria for constraining the residual are not used to obtajn the instantaneous' val-
ues of the expansion coefficients, but rather to determine their time evolution
If the rate of change of the kth expansion function is calculated to minimize;

(.]|I?(¢) ||?)2, a necessary criterion for a minimum may be obtained by differen-
tiation with respect to the quantity day fdt = a;

{ f (R(¢))2dx}
5
d N N 2
d(ar) fs [,;é"‘o" +F (; “"“’")J dx
N N
=2 fs [’; Gnn + F (Z;a,,qo,,)] prdx (4.5)

=2 j; R(@)idx. (4.6)

0=

d
d(ay)

The. second derivative of (R (¢)12)? with respect to ax is 2(|lgx|l2)2, which is
Ppositive. Thus, the extremum condition (4.6) is associated with a true minimum
of (JI{? (¢) fl2)2, and the Galerkin requirement is identical 1o the condition obtained
by minimizing the £,-norm of the residual.

{ks derived in (4.5), the Galerkin approximation and the £;-minimization of the
residual both lead to a system of ordinary differential equations for the expansion
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coefficients of the form

N da N
In == f[ F( tn ,,)tp;{ drx forallk =1... .. N, (4.7
; ¢ dt _q[ Z ¢

n -1

where
Ly = f@nﬁﬂkdx-
s

The initial conditions for the preceding system of differential equations are ob-
tained by choosing a; (), . . ., an (1) such that ¢ (x, tg) provides tt‘1e “best” ap-
proximation to f{x). The possible strategies for constraining the initial error are
identical 10 those used to ensure that the residual is small. As before, the choice
that minimizes the £7-norm of the initial error also satisfics the Galerkin require-
ment that the initial error be orthogonai to each of the expansion functions,

N
f (Zan(fu)go,,(x) — f(x)) wr(x)dx =0 foraltk=1,.... N,
A

n=1

of, equivalently,

N
Y i, = f f)e(x)dx forallk=1,...,N. (4.8)
s

n=1

4.2 The Spectral Method

The characteristic that distinguishes the spectral method from other series-expan-
sion methods is that the expansion functions form an orthogonal set. Since the
expansion functions are orthogonal, ¢ is zero unless n = k, and the system of
differential equations for the coefficients (4.7) reduces to

N
day 1 ( ) _ 49
—_— = F anpn o | dx forallk=1,. ., N. (4.9)
dt Irk s[ Z v

n=1

This is a particularly useful simplification, since explicit algebraic equations for
each ag(t + A1) are obtained when the time derivatives in (4.9) are replaf:ed
with finite differences. In contrast, the finite-difference approximation of the time
derivatives in the more general form (4.7) introduces a coupling between_ all 'Lhe
expansion coefficients at the new time level, and the solution of the rcsu!tmg im-
plicit system of algebraic equations may require considerable computation. ’_l'.he
orthogonality of the expansion functions also reduces the expression for the initial
value of each expansion coefficient {4.8) to

ax(io) = — [ FR)ox(x) dx. (4.10)
Ik Js
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The choice of some particular family of orthogonal expansion functions is
largely dictated by the geometry of the problem and by the boundary conditions.
Fourier series are well suited to rectangular domains with pertodic boundary con-
ditions. Chebyshev polynomials arc a possibility for nonperiodic domains. Asso-
ciated Legendre functions are useful for representing the latitudinal dependence
of a function on the spherical Earth. Since Fourier series lead to the simplest for-
mulae, they will be used to illustrate the elementary propertics of the spectral
method. The special problems associated with spherical geometry will be dis-
cussed in Section 4.4

4.2.1  Comparison with Finite-Difference Methods

In Chapter 2, a variety of finite-difference methods were tested on the one-dimen-
sional advection equation

"'{_V" + ca—w

ar dx
Particular emphasis was placed on the simplest case, in which ¢ was constant.
When ¢ is constant, it is casy to find expansion functions that are eigenfunctions of
the spatial derivative term in (4.11). As a consequence, the problem of advection
by a constant wind is almost too simple for the spectral method. Nevertheless, the
constant-wind case reveals some of the fundamental strengths and weaknesses of
the spectral method and allows a close comparison between the spectral method
and finite-difference schemes.

Suppose, therefore, that ¢ is constant and solutions are sought to (4.11) on the

periodic domain —7 < x < 7, subject to the initial condition v (x, 3= fx)A
Fourier series expansion

=0. (4.11)

N

S(x, 1) = Z ap(1)e'™ (4.12)

k=-N

is the natura! choice for this problem. Since individual Fourier modes are eigen-
functions of the differential operator in (4.11), evolution equations for the Fourier

coefficients of the form d
di: +ickag =0 .13)

may be obtained by directly substituting (4.12) into the advection equation. In this
atypically simple case, the residual is zero, and it is not necessary to adopt any
particular procedure to minimize its norm. Nevertheless, (4.13) can also be ob-
tained through the Galerkin requirement that the residual be orthogonal to each of
the expansion functions. In order 10 apply the Galerkin formulation it is necessary
to generalize the definition of orthogonality to include complex-valued functions.
Two complex-valued functions g(x) and h(x) are orthogonal over the domain §
if
fg(x)h*(x)dx =0,
N
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where h*(x) denotes the complex conjugate of h(x).! As an example, note that
for integer values of r and m,

T
L’”” mpx |

.
f t?mxe—-lmx dy = n—m

-

=0, ifm #n,

-

2w, ifm=n,

which is just the well-known orthogonality condition for two Fourier modes. Us-
ing this orthogonality relation and setting /(¥) = ¢dy/dx, with ¢ constant, re-
duces (4.9) to (4.13),

If the ordinary differential equation (4.13) is solved analytically (in practical
applications it must be computed numerically), solutions have the form a, (1) =
exp(—ickt). Thus, in the absence of time-differencing errors, the frequency of
the kth Fourier mode is identical to the correct value for the continuous problem
@ = ck. The spectral approximation does not introduce phase speed or amplitude
errors—even in the shortest wavelengths! The ability of the spectral method to
correctly capture the amplitude and phase speed of the shortest resolvable waves
1s a significant advantage over conventional grid-point methods, in which the spa-
tial derivative is approximated by finite differences, yet surprisingly, the spectral
method is not necessarily a good technique for modeling short-wavelength dis-
turbances. The problem lies in the fact that it is only those waves retained in the
truncated series expansion that are correctly represented in the spectral solution.
If the true solution has a great deal of spatial structure on the scale of the shortest
wavelength in the truncated series expansion, the spectral representation will not
accurately approximate the true solution,

The problems with the representation of short-wavelength features in the spec-
tral method are illustrated in Fig. 4.1, which shows ten grid-point values forming a
2Ax-wide spike against a zero background on a periodic domain with a uniformly
spaced grid. Also shown is the curve defined by the truncated Fourier series pass-
ing through those ten grid-point values. The Fourier series approximation to the
2Ax spike exhibits large oscillations about the zero background state on both
sides of the spike. Now suppose that the data in Fig. 4.1 represent the initial con-
dition for a constant-wind-speed advection problem. The over- and under-shoots
associated with the Fourier approximation will not be apparent at the initial time
if the data are sampled only at the points on the discrete mesh. If time-differencing
errors are neglected, the grid-point values will also be exact at those subsequent
times at which the initial distribution has translated an integral number of grid
intervals. The grid-point values will, however, reveal the oscillatory error at in-

'Mulliplicalion by the complex conjugate ensures that if g(x) = a(x) + ib(x) with @ and b real,
then

f gix}g" (x)dx = f ta? + b%)dx.
5 s
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;(a)? L (o)

FIGURE 4.1. {a} Ten pericdic grid-point values exhibiting a piecewise linear 2A x spike
and the truncated Fouricr series approximation passing through thosc ten points. {b) Values;
of the truncated Fourier series sampled at the same grid-point location after translating the
curve obe-hall’ grid point w the right.

termediate times. The worst errors in the grid-paint values will occur at times
when the solution has traveled n + % grid wtervals, where » is any integer. In
this particular example, the error on the discrete grid does not accumulate with
time; it oscillates instead, achieving a minimum when the solution has translated
an integral number of grid intervals. The maximum etror is limited by the crror
generated when the initial condition is projected onto the truncated Fourier series,

The Finite Fourier Transform

There is a simple relationship between the nine? independent grid-point values in
Fig. 4.1 and the nine coefficients determining the truncated Fourier series passing
through those points. If the Fourier-series expansion of a real-valued function is
truncated at wave number N, the set of Fourier coefficients contains 2N + 1 picces
of data. Assuming that the Fourier expansion functions are periodic on the domain

0 < x < 27, an equivalent amount of information is contained by the 2N + |
function values ¢ (x js 1), where

. 2x ,
xj—1(2N+l) and j=1,.. 2N+ 1.

It ‘is obvious that the set of Fourier coefficients a_y (1), ..., ax (1) defines the
grid-point values ¢ (x j» 1) through the relation

N

St = Y ax(r)e™™, (4.14)

k=-N

Although it is not as self-evident, the 2¥ + 1 Fourier coefficients may also be
determined from the 2N + 1| grid-point values. An exact algebraic expression for

D —

2 - . .
The tenth grid-point value is redundant information because the solution is periodic,



a, (1) can be oblained by noting that

IN+1 IN+] N
Z ¢(le)(,—fm.1, _ Z( Z am“Jemu,)crm.n
j=1 Jl vm N
N AN+ )
= Z am(rj( Z e""’-'ei"x"). (4.15)

m=-N j=1

Further simplification of the preceding equation is possible because the final sum-
malion in {4.15) obeys an orthogonality condition on the discrete mesh. Using the
definition of x;,

AN+ IN -]

Z SME g A Z (('23‘\#)1 (4.16)

j=t =i

If m = n, then (4.16) sums 10 2N + 1; for m # n the formula {or the sum of a
finite geometric series,

1 — rn+l
1+r+r2+---+r":T—, (4.17)
-—r
may be used to reduce (4.16) to
2N +1 irto—n) | — pi2mim—n)
. . e & e
D emeTm = ( e ) (4.18)
j=1 I —e ovel”
Using these orthogonality properties, (4.15) becomes
] 2N _
_-— i —IRX;
an(t) = o ; $lxj, e, (4.19)

The relations (4.19) and (4.14), known as finite Fourier transforms, are discretized
analogues to the standard Fourier transform and its inverse. The integrals in the
continuous transforms arc replaced by finite sums in the discrete expressions.
These formulae, or more specifically the mathematically equivalent Fast Fourier
Transform (FFT) algorithms, are essential for obtaining efficient spectral solutions
in many practical applications where it is advantageous 1o transform the solution
back and forth between wave number space and physical space once during the
execution of every time step.

The Equivalent Grid-Point Method.

If ¢ is constant, the spectral solution to the advection equation (4.11) can be recast
in the form of an equivalent finite-difference method. Observe that

B
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deix;, 1) ZN: dan ;,
—_— —— ¢ Xj

dt Bt dr
N
= Z incea, (1)e'™
n=—N
N 1 N+
= — ; —inx inx;
2N+

=~ Z Ciedlxg, 1),
Py

where
] N

Cip = —— . s il xp)
ok 2N+ERZNH‘I€ .

The ﬁnite-d_iffcrence coefficient C; ; depends only on the difference between J
and k, and is zero if j = k. If j # £, a simpler expression for Cj j+r can be

obtained by defining
2
PR He=t (ZN]-ri- l)’

in which case

1 d N . | d N
Ciip = ing | __ —iN ig M
ST ON KT ds (FZNE )—2N+1ds ¢ ‘ZO(BI))-
£ &

Using (4.17) to sum the finite geometric serics, differentiating, and noting that

eNHDs — | the preceding becomes
(_l)(-H
Cj. j+t = __‘—h—,
2sin ( 2N+l)
which implies that since C j.j+t = —Cj j—g, the equivalent finite-difference for-

mula is centered in space.

Two-grid-poinl values are used in the centered second-order finite-difference
apprpxnmation to 3¢/dx. A fourth-order centered difference utilizes four points;
}he sixth-order difference requires six grid points, Every grid-point on the numer-
ical mesh (except the central point) is involved in the spectral approximation of
3Y¥/8x. As will be shown in the next section, the use of all these grid points allows
the spectral method to compute derivatives of smooth functions with very high ac-
Curacy. Merilees and Orszag (1979) have compared the weighting coefficients for
tl.le spectral method on a seventeen-point periodic grid with the weighting coeffi-
Clents for second- through sixteenth-order centered finite di fferences. Their calcu-
lations appear in Table 4.1, which shows that the influence of remote grid points
on the spectral calculation is much greater than the remote influence in any of the
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Ax away from 2nd 4th 6th 16th

central point order order order order speciral
1 0.500 0.667 0.750 0.889 1.006
2 —0.083 —0.150 -0.31] —0.512
3 0.017 0.113 0.351
4 ~0.035 0274
5 0.009 0.232
6 —0.001 —0.207
7 0.000 0.192
8 —0.000 —0.186

TABLE 4.1. Comparisen of weight accorded each grid point as a function of is distance
to the central grid point in centered finite differences and in a spectral method employing
17 expansion coefticients.

finite-difference formulas. The large degree of remote influence in the spectral
methed has been a source of concern, since the true domain of dependence for the
constant-wind-speed advection equation is a straight line. Practical evidence sug-
gests that this remote influence is not a problem provided that enough terms are
retained in the truncated Fourier series to adequately resolve the spatial variations
in the solution,

Order of Accuracy

The accuracy of a finite difference is characterized by the truncation error, which
is compuied by estimating a smooth function’s values at a series of grid points
through the use of Taylor series, and by substituting those Taylor-series expan-
sions into the finite-difference formula. The discrepancy between the finite-dif-
ference calculation and the true derivative is the truncation error and is usually
proportional to some power of the grid interval. A conceptually similar character-
ization of accuracy is possible for the computation of spatial derivatives via the
spectral method.

The basic idea is to examine the difference between the actual derivative of
a smooth function and the approximate derivative computed from the spectral
representation of the same function. Suppose that a function v (x) is periodic on
the domain —7 < x < 7 and that the first few derivatives of ¥ are continuous.
Then y and its first derivative can be represented by the convergent Fourier series

v = Y aet, (4.20)
k=—o0

and
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If ¥ 1is represented by a spectral approximation, the series will be truncated at
some wave number N, but the Fourier coefficients for all |kl < N will be identical
to those in the infinite series (4.20).% Thus, the error in the speciral representation

of v /dx is
E = Z ikaget**.
kimN

If the pth derivative of i is piecewise continuous, and all lower order derivatives
are continuous, the Fourier coefficients satisfy the inequality

c
lag] < W (4.21)

where (' is a positive constant (see Problem 10). Thus,

x
i C >z 5
El<2 Y - <ac ds _ 2 (1)
tkjp-1 v 577V p—2\NP-2

k=N+1

As demonstrated in the preceding section, a 2N + 1 mode spectral represen-
tation of the derivative is equivalent to some finite-difference formula invelving
2N +1 grid points equally distributed throughout the domain. The spectral compu-
tation is therefore equivalent to a finite-difference computation with grid spacing
Ax, =21 /(2N +1). Thus Ax, oc N~ and

[£] < C(Axe)P?, (4.22)

where C is another constant. It follows that the effective order of accuracy of the
spectral method is determined by the smoothness of . If ¥ is infinitely differen-
tiable, the truncation error in the spectral approximation goes 1o zero faster than
any finite power of Ax,. In this sense, spatial derivatives are represented with
infinite-order accuracy by the spectral method.

The preceding error analysis suggests that if a Fourier series approximation to
¥(x) (as opposed to dy/dx) is truncated at wave number N, the error will be
O(1/NP~1), This error estimate is actually too pessimistic. As noted by Gottlieb
and Orszag (1977, p. 26), (4.21) can be tightened, because if the pth derivative of
V¥ is piecewise continuous and all lower-order derivatives are continuous,

1
lax] < W as k — foc. (4.23)

3 . . . . .
In order 10 ensure that the g are identical in both the infinite and truncated Fourier series, it is
necessary to compule the integral in the Fourier transform,

a = —l— ! Wl)e ™ gy
2t | o '

with sufficient accuracy to avoid aliasing error.



Away from the points where v /d x? is discontinuous, the maximum-norm error
in the truncated Fourier series decays at a rate similar to the magnitude of the
first few neglected Fourier coefficients, and according to (4.23) this rate is faster
than O(1/N?). In practice, the error is O(1/N 7'y away from the points where
d”yfdx? is discontinuous and O(1/N ") near the discontinuities (Fornberg 1996,
p. 13).

Time-Differencing

The speciral representation of the spatial derivatives reduces the original par-
tial differential cquation to the system of ordinary differential equations (4.9).
In most practical applications, this system must be solved numerically. The time-
differencing schemes discussed in Section 2.3 provide a number of possibilities,
among which the leapfrog and Adams—Bashforth methods are the most com-
mon choices. Integrations performed using the spectrat method typically require
smaller time steps than those used when spatial derivatives are computed with
low-order finite differences. This decrease in the maximum allowable time step
is a natural consequence of the spectral method’s ability to correctly resolve the
spatial gradient in a 2Ax wave,

In order to better examine the source of this time-step restriction, consider the
case of advection by a constant wind speed c. When c is constant, the time de-
pendence of the kth Fourier component is governed by (4.13), which is just the
oscillation equation (2.30) with ¥ = ck. The maximum value of k| is N =
nfAx, — % % 1 fAx,, where Ax, is the equivalent mesh size introduced in con-
nection with (4.22) and 7/ Ax, > % if the total domain [ —, ;7] is divided into at
least ten grid intervals. If the oscillation equation is integrated using the leapfrog
scheme, the stability requirement is jk Af| < 1. Thus, the time step in a stable
leapfrog spectral solution must satisfy [cAt/Ax,| < 1/n.

Now suppose the advection equation (4.11) is approximaied using a centered
second-order spatial difference. The time evolution of the approximate solution
at the jth grid point is, once again, governed by the oscillation equatien, In this
case, however, x = —csin(k Ax)/Ax. The misrepresentation of the shorter wave-
lengths by the finite difference reduces the maximum value of |« | to ¢/ Ax, and the
leapfrog stability criterion relaxes to [cAt/Ax| < 1. If higher-order finite differ-
ences are used, the error in the shorter wavelengths is reduced, and the maximum
allowable value of [cAr/Ax! decreases to 0.73 for a fourth-order difference, and
to 0.63 for a sixth-order difference. Machenhauer (1979) notes that as the order
of a centered finite-difference approximation approaches infinity, the maximum
value of lc At/ Ax| for which the scheme is stable approaches 1 /7. The maximum
stable time step for the leapfrog spectral method is therefore consistent with the
interpretation of the spectral method as an infinite-order finite-difference scheme.

4.2.2 Improving Efficiency Using the Transform Method

The computational effort required to obtain spectral solutions to the advection
equation ceases 1o be trivial if there are spatial variations in the wind speed. In
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such circumstances, the Galerkin requircment (4.9) becomes

N T

day { :
Tl Z na,,[ clx, e’ 0x gy (4.24)
n=-N T

Although it may be possible to evaluate the integrals in {4.24) exactly for cer-
tain special flows, in most instances the computation must be done by numerical
quadrature. In a typical practical application, c(x, 1) would be available at the
same spatial resolution as ¥ (x, 1); indeed, many models might include equations

that stmultaneously predict ¢ and . Suppose, therefore, that ¢ is given by the

Fourier series
N

cx, )= Y emlr)e™. (4.25)
m=-N
Substitution of this series expansion into (4.24) gives

dak i N N T
_ = Z Z HEmGn er(n+m-—k}x dx,
dt 27 -

n=—Nm=-N
which reduces, by the orthogonality of the Fourier modes, to

day .
ar = — Z inCpmay. (4.26)

mta=k
Im), lal=N

The notation below the summation indicates that the sum shouid be performed for
all indices n and m such that [n| < N, |m| < N, and n + m = k.

Although the expression (4.26) is relatively simple, it is not suitable for imple-
mentation in large, high-resolution numerical models. The number of arithmetic
operations required to evaluate the time derivative of the kth Fourier coefficient
via (4.26) is proportional to the total number of Fourier coefficients, M = 2N + 1.
The total number of operations required to advance the solution one time step
is therefore O(M?). On the other hand, the number of calculations required to
evaluate a finite-difference formula a1 an individual grid point is independent
of the total number of grid points. Thus, assuming that there are M points on
the numerical grid, a finite-difference solution may be advanced one time step
with just O(M) arithmetic operations. Spectral models are therefore less efficient
than finite-difference models when the approximate solution is represented by a
large number of grid points—or, equivalently, a large number of Fourier modes.
Moreover, the relative difference in computational effort increases tapidly with
increases in M. As a consequence, spectral models were limited to just a few
Fourier modes until the development of the transform method by Orszag (1970)
and Eliasen et al. (1970).

The key to the transform methed is the efficiency with which fast Fourier trans-
forms can be used to swap the solution between wave-number space and physical
space. Only O (M log M) operations are needed to convert a set of M Fourier co-
efficients, representing the Fourier transform of ¢ (x), into the M grid-point values
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dilx j).“ The basic idea behind the transform method is to compute product terms
like cdy/dx by transforming c and dy/dx from wave number space to physical
space (which takes O(M log M) operations), then mulliplying ¢ and 3y /dx at
cach gnd point (requiring O (M) operations}, and finally transforming the preduct
back to wave-number space {which again uses G(M log M) operations). The to-
tal number of operations required to evaluate ¢dyr/dx via the transform technique
is therefore O (M log M), and when the number of Fourier components is large,
it is far more efficient to perform these G(M log M) operations than the O(M?)
operations necessary for the direct computation of (4.26) in wave-number space.
In order to appreciate the degree to which the transform method can improve ef-
ficiency, suppese the spectral method is used in a two-dimensional problem in
which the spatial dependence along cach coordinate is represented by 128 Fourier
modes; then an order-of-magnitude estimate of the increasce in speed allowed by
the transform method is

( 128 x 128

— "} = 0(1000).
10g2(128x128)) (o0

The transform method is implemented as follows. Supposc that one wishes to
determine the Fourier coefficients of the product of ¢ (x) and x (x) such that

K
pOXE) = Y pre™,
k=—K

where ¢ and x are periodic on the interval 0 < x < 27 and

K K
$x)= Y ane™, x(x)= Y bue™ (4.27)

m=—K n=—K

As just discussed, it is more efficient to transform ¢ and x 1o physical space,
compute their product in physical space, and to transform the result back to wave-
number space than to compute py from the “convolution sum”

Pe = Z amb,.

m+n=k
Il Inf<K

The values of p; obtained with the transform technigue will be identical to those
computed by the preceding summation formula, provided that there is sufficient
spatial resolution 1o avoid aliasing error® during the computation of the product

*To be specific, if M is a power of two, a transform can be computed in 2M logy M operations
using the FFT algorithm.

5 Aliasing error occurs when a short-wavelength fluctuation is sampled at discrete intervals and
misinterpreted as a longer-wavelength oscillation. As discussed in Section 3.5.1, aliasing error can be
generaied in attempting to evaluate the product of two poorly resolved waves on a numerical mesh.
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FIGURE 4.2. Aliasing of k| + &, into k such that || appears as the symmetric reflection
of k1 + k; about the cutoff wave number on the high-resolution physical mesh.

terms on the physical-space mesh. Suppose that the physical-space mesh is de-
fined such that

2
X; = N h F=1,..., .
PN where =1, 2N +1 (4.28)

It might appear natural to chose N = X, thereby equating the number of grid-
points on the physical mesh with the number of Fourier modes. It is, however,
necessary 10 choose N > K in order to avoid aliasing error.

The amount by which N must exceed X may be most easily determined us-
ing the graphical diagram shown in Fig. 4.2, which is similar to Fig. 3.9 of Sec-
tion 3.5.1. The wave number is plotted along the horizontal axis; without loss
of generality, only positive wave numbers will be considered. The cutoff wave
number in the original expansion is K, and the cutoff wave number on the high-
resolution physical mesh is 7/ Ax,. Any aliasing error that results from the mul-
tiplication of waves with wave numbers k; and k; will appear at wave number
k = ki +k3 — 2/ Ax,. The goal is to choose a sufficiently large value for /Ax,
lo guarantee that no finite-amplitude signal is aliased into those wave numbers
retained in the original Fourier expansion, which lie in the interval — K <k=<K.
The highest wave number that will have nonzero amplitude after computing the
binary product on the physical mesh is 2K . Thus, there will be no aliasing error if

2r
Axe

2r
= - 2K.
Axe

K<42Kg

Using the definition of Ax, implied by {4.28), the criteria for the elimination of
aliasing error reduces to N > (3K — 1)/2.

The preceding result may be verified algebraicaily by considering the formula
for py, the kth component of the finite Fourier transform computed from the grid-
point values of ¢ x on the physical mesh,

I .
Pr= i 3 G )xxpe . (4.29)
i=1
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Here M = 2N + 1 is the total number of grid points on the physical mesh. Let
the values of ¢{x;) and x (x;) appearing in the preceding formula be expressed
in the form
N N
¢(x;) = Z ame' ™, x(xj)= Z bpe'™,
m=—N n=—N

where those values of a, and b,, that were not included in the original series
expansions (4.27) are zero, i.¢.,

ap=hy =0 for K <|f|<N. (4.30)

Substituting these expressions for ¢ (x;) and x (x;) into (4.29), onc obtains

N N 1 M 7
=L ) am”n(ﬁ Ze'(’"*'"""’”)- @31

m=—Nn=-N i=1

Since x; = 2m j/M, each term in the inner summation in (4.31) is unity when
m-+n—kis0, M, or —M. The inner summation is zero for all other values of m
and n by the discrete orthogenality condition (4.18). Thus, (4.31) may be written

ﬁk = Z by + Z ambn + Z ambn, (4.32)

m+n=k m+a=t+M m+a=k-M
Ini). In|<N o], 1| <N bml. Inl<N

where the last two terms represent aliasing error, only one of which can be nonzero
for a given value of k. The goal is to determine the minimum resolution required
on the physical mesh (or, equivalently, the smallest M) that will prevent aliasing
errors from influencing the value of p}; associated with any wave number retained
in the original Fourier expansion. Any aliasing into a negative wave number will
arise through the summation

Z amby.

mta=k+M
lml, [n] <N

I follows from (4.30) that am by = 0if m + n > 2K, so for a given wave number
k all the terms in the preceding summation will be zeroif m+n =k + M > 2K.
Thus, there will be no aliasing error in p; for those wave numbers retained in
the original expansion if M satisfies —K + M > 2K. An equivalent condition
expressed in terms of the wave number N is N > (3K — 1)/2, which is the
same result obtained using Fig. 4.2. A similar argument may be used to show that
this same condition also prevents the third term in (4.32) from generating aliasing
error in the retained wave numbers. The choice N = 3K /2 is therefore sufficient
to ensure that p; = py for all |k| < K and guaraniee that the transform method
yields the same algebraic result as the convolution sum in wave-number space. In
order to maximize the efficiency of the fast Fourier transforms used in practical
applications, N is often chosen to be the smallest integer exceeding (3k — 1)/2
that contains no prime factor larger than five,

The procedure used to implement the transform method may be summarized
as follows. In order to be concrete, suppose that a solution to the variable-wind-
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speed advection equation is sought on the periodic domain 0 < x < 27 and
that c(x, 1) is being simultancously predicted by integrating a sccond unspecified
equation. Let both ¢ and ¢ be approximated by Fourier scries expansions of the
form (4.14) and (4.25) with cutoff wave numbers N = K _

1. Pad the coefficients in the Fouricr expansions of ¢ and ¢ with zeros by
defining gy = ¢, = 0, for K < [k| < 3K /2.

2. Muluiply each a; by ik 1o compute the derivative of ¢ in wave-number
space.

3. Perform two inverse FFTs to obtain ¢(x;) and 3¢ (x;)/3x on the physical-
space grid, whose nodal points are located at x;=2n /(3K + 1)

4. Compute the product ¢(x;)d¢{x,)/dx on the physical-space grid,

5. (If terms representing additional forcing are present in the govemning equa-
tion, and if those terms are more casily evaluated on the physical mesh than
in wave-number space, evaluate those terms now and add the result 10 to

c(x;)ad{x;}/ox.)

6. Fast-Fourier transform ¢(x j)9¢(x;)/0x to obtain the total forcing at each
wave number, i.c., Lo get the right-hand-side of (4.26). Discard the forcing
at wave numbers for which |k| > K.

7. Step the Fourier coefficients forward to the next time level using an appro-
priate time-differencing scheme.

Note that the transform method allows processes that are difficult to describe
mathematically in wave-number space to be conveniently evaluated during the
portion of the integration cycle when the solution is available on the physical
mesh. For example, if ¢ represents the concentration of water vapor, any change
in ¢ produced by the condensation or evaporation of water depends on the degree
to which the vapor pressure at a given grid point exceeds the saturation vapor
pressure. The degree of supersaturation is easy to determine in physical space but
very difficult to assess in wave-number space.

4.2.3  Conservation and the Galerkin Approximation

The mathematical equations describing non-dissipative physical systems often
conserve domain averages of quantities like energy or momentum. When spectral
metheds are used to approximale such systems, the numerical solution replicates
some of the important conservation properties of the true solution. In order to ex-
amine the conservation properties of the spectral method for a relatively general
class of problems consider those partial differential equations of the form (4.1)
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for which the forcing has the property that vF (v) = 0, where the overbar denotes
the integral over the spatial domain and v is any sufficiently smooth function that
satisfies the boundary conditions.

An example of this type of problem is the simulation of passive tracer trans-
port by nondivergent fiow in a periodic spatial domain, which is governed by the
equation

4

dt
In this case F{v) = v - Vu. One can verify that vF (v) = 0 if v is any periodic
function with continuous first derivatives by noting that

+v.- Vi =0

]
f u(v- VuydV = -[ V- (i) — A (V-v)dV =0,
D 2/p
where the second equality follows from periodicity and the nondivergence of the
velocity field.
If ¢ is an approximate spectral solution to (4.1) in which the time dependence
is not discretized, then

0
8—? + F(#) = R(®), 433)

where R(¢) denotes the residual. Suppose that the partial differential equation
being approximated is a conservative system for which ¢ F(¢) = 0, then multi-
plying (4.33) by ¢ and integrating over the spatial domain yields

The right side of the preceding is zero because ¢ is a linear combination of the ex-
pansion functions and R(¢) is orthogonal to each individual expansion function.
As a consequence,

d
7 1#l2 = 0, 4.34)

implying that spectral approximations to conservative systems are not subject to
nonlinear instability because (4.34) holds independent of the linear or nonlinear
structure of F(¥). The only potential source of numerical instability is in the
discretization of the time derivative.

Neglecting time-differencing errors, spectral methods will also conserve ¢ pro-
vided that F(v) = 0, where once again v is any sufficiently smooth function that
satisfies the boundary conditions. The conservation of ¢ can be demonstrated by
integrating (4.33) over the domain to obtain

2 —RG) « RO =0,

where @ is the lowest-wave-number orthogonal expansion function, which is a
constant.

e
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4.3 The Pseudospectral Method

The spectral method uses orthogonal expansion functions to represent the nu-
merical solution and constrains the residual error to be orthogonal to each of the
expansion functions. As discussed in Scction 3.1, there arc allernative strategics
for constraining the size of the residual. The pseudospectral method utilizes one
of these alternative strategies: the collocation approximation, which requires the
residual to be zero at every point on some fixed mesh. Spectral and pseudospecira)
methods might both represent the solution with the same orthogonal expansion
functions; however, as a consequence of the collocation approximation, the pseu-
dospectral method is basically a grid-point scheme—series expansion functions
are used only to compute derivatives.

In order to illusirate the pscudospectral procedure, suppose that solutions arc
sought to the advection equation (4.11) on the periedic domain 0 < x < 27
and that the approximate solution ¢ and the spatially varying wind speed ¢(x) arc
represented by Fourier series truncated at wave number K

K K

G(x, 1) = Z ane'™,  olx,1) = Z Cme' ™.

n=-K m=—K
The collocation requirement at grid point j is

K

K K
da, . . ‘
E d—;'e'"‘f+ E Cmpe' ™ § ingaye'™i = Q. (4.35)
n=-K m=—K n=—K

Enforcing R(¢(x;)) = 0 at 2K + 1 points on the physical-space grid leads to
a solvable linear system for the time derivatives of the 2K + 1 Fourier coeffi-
cients. In the case of the Fourier spectral method, the most efficient choice for the
location of these points is the equally spaced mesh

f 2=
i = I\ so— i=1,2,...

There is no need actually to solve the linear system for the day /dt. Tt is more
efficient to write (4.35) in the equivalent form

d¢ ¢
E(Xj)'l'C(xj)g;(xj) =0, (437
where
a¢ X . inx;
a(xj) = E ina,e'™t, (4.38)

n=-K



