

Beginner's Python
Cheat Sheet - Lists

Defining a list
Use square brackets to define a list, and use commas to
separate individual items in the list. Use plural names for
lists, to make your code easier to read.

Making a list
users = ['val', 'bob', 'mia', 'ron', 'ned']

Adding elements
You can add elements to the end of a list, or you can insert
them wherever you like in a list.

Adding an element to the end of the list
users.append('amy')

Starting with an empty list
users = []
users.append('val')
users.append('bob')
users.append('mia')

Inserting elements at a particular position
users.insert(0, 'joe')
users.insert(3, 'bea')

Python Crash Course
A Hands-On, Project-Based

Introduction to Programming
nostarch.com/pythoncrashcourse2e

Sorting a list
The sort() method changes the order of a list
permanently. The sorted() function returns a copy of the
list, leaving the original list unchanged. You can sort the
items in a list in alphabetical order, or reverse alphabetical
order. You can also reverse the original order of the list.
Keep in mind that lowercase and uppercase letters may
affect the sort order.

Sorting a list permanently
users.sort()

Sorting a list permanently in reverse alphabetical
order
users.sort(reverse=True)

Sorting a list temporarily
print(sorted(users))
print(sorted(users, reverse=True))

Reversing the order of a list
users.reverse()

What are lists?

A list stores a series of items in a particular order.
Lists allow you to store sets of information in one
place, whether you have just a few items or millions
of items. Lists are one of Python's most powerful
features readily accessible to new programmers, and
they tie together many important concepts in
programming.

Accessing elements
Individual elements in a list are accessed according to their
position, called the index. The index of the first element is
0, the index of the second element is 1, and so forth.
Negative indices refer to items at the end of the list. To get
a particular element, write the name of the list and then the
index of the element in square brackets.

Getting the first element
first_user = users[0]

Getting the second element
second_user = users[1]

Getting the last element
newest_user = users[-1]

Modifying individual items
Once you've defined a list, you can change individual
elements in the list. You do this by referring to the index of
the item you want to modify.

Changing an element
users[0] = 'valerie'
users[-2] = 'ronald'

Removing elements
You can remove elements by their position in a list, or by
the value of the item. If you remove an item by its value,
Python removes only the first item that has that value.

Deleting an element by its position
del users[-1]

Removing an item by its value
users.remove('mia')

Popping elements
If you want to work with an element that you're removing
from the list, you can "pop" the element. If you think of the
list as a stack of items, pop() takes an item off the top of
the stack. By default pop() returns the last element in the
list, but you can also pop elements from any position in the
list.

Pop the last item from a list
most_recent_user = users.pop()
print(most_recent_user)

Pop the first item in a list
first_user = users.pop(0)
print(first_user)

Looping through a list
Lists can contain millions of items, so Python provides an
efficient way to loop through all the items in a list. When
you set up a loop, Python pulls each item from the list one
at a time and stores it in a temporary variable, which you
provide a name for. This name should be the singular
version of the list name.
 The indented block of code makes up the body of the
loop, where you can work with each individual item. Any
lines that are not indented run after the loop is completed.

Printing all items in a list
for user in users:
 print(user)

Printing a message for each item, and a separate
message afterwards
for user in users:
 print(f"Welcome, {user}!")

print("Welcome, we're glad to see you all!")

 List length
The len() function returns the number of items in a list.

Find the length of a list
num_users = len(users)
print(f"We have {num_users} users.")

The range() function
You can use the range() function to work with a set of
numbers efficiently. The range() function starts at 0 by
default, and stops one number below the number passed to
it. You can use the list() function to efficiently generate a
large list of numbers.

Printing the numbers 0 to 1000
for number in range(1001):
 print(number)

Printing the numbers 1 to 1000
for number in range(1, 1001):
 print(number)

Making a list of numbers from 1 to a million
numbers = list(range(1, 1000001))

Copying a list
To copy a list make a slice that starts at the first item and
ends at the last item. If you try to copy a list without using
this approach, whatever you do to the copied list will affect
the original list as well.

Making a copy of a list
finishers = ['kai', 'abe', 'ada', 'gus', 'zoe']
copy_of_finishers = finishers[:]

More cheat sheets available at
ehmatthes.github.io/pcc_2e/

More cheat sheets available at
github.com/ehmatthes/pcc/cheatsheets

Styling your code
Readability counts

• Use four spaces per indentation level.
• Keep your lines to 79 characters or fewer.
• Use single blank lines to group parts of your

program visually.

Simple statistics
There are a number of simple statistical operations you can
run on a list containing numerical data.

Finding the minimum value in a list
ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]
youngest = min(ages)

Finding the maximum value
ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]
oldest = max(ages)

Finding the sum of all values
ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]
total_years = sum(ages)

List comprehensions
You can use a loop to generate a list based on a range of
numbers or on another list. This is a common operation, so
Python offers a more efficient way to do it. List
comprehensions may look complicated at first; if so, use the
for loop approach until you're ready to start using
comprehensions.
 To write a comprehension, define an expression for the
values you want to store in the list. Then write a for loop to
generate input values needed to make the list.

Using a loop to generate a list of square numbers
squares = []
for x in range(1, 11):
 square = x**2
 squares.append(square)

Using a comprehension to generate a list of square
numbers
squares = [x**2 for x in range(1, 11)]

Using a loop to convert a list of names to upper case
names = ['kai', 'abe', 'ada', 'gus', 'zoe']

upper_names = []
for name in names:
 upper_names.append(name.upper())

Using a comprehension to convert a list of names to
upper case
names = ['kai', 'abe', 'ada', 'gus', 'zoe']

upper_names = [name.upper() for name in names]

Slicing a list
You can work with any set of elements from a list. A portion
of a list is called a slice. To slice a list start with the index of
the first item you want, then add a colon and the index after
the last item you want. Leave off the first index to start at
the beginning of the list, and leave off the last index to slice
through the end of the list.

Getting the first three items
finishers = ['kai', 'abe', 'ada', 'gus', 'zoe']
first_three = finishers[:3]

Getting the middle three items
middle_three = finishers[1:4]

Getting the last three items
last_three = finishers[-3:]

Tuples
A tuple is like a list, except you can't change the values in a
tuple once it's defined. Tuples are good for storing
information that shouldn't be changed throughout the life of
a program. Tuples are usually designated by parentheses.
(You can overwrite an entire tuple, but you can't change the
individual elements in a tuple.)

Defining a tuple
dimensions = (800, 600)

Looping through a tuple
for dimension in dimensions:
 print(dimension)

Overwriting a tuple
dimensions = (800, 600)
print(dimensions)

dimensions = (1200, 900)

 Visualizing your code
When you're first learning about data structures such as
lists, it helps to visualize how Python is working with the
information in your program. pythontutor.com is a great tool
for seeing how Python keeps track of the information in a
list. Try running the following code on pythontutor.com, and
then run your own code.

Build a list and print the items in the list
dogs = []
dogs.append('willie')
dogs.append('hootz')
dogs.append('peso')
dogs.append('goblin')

for dog in dogs:
 print(f"Hello {dog}!")
print("I love these dogs!")

print("\nThese were my first two dogs:")
old_dogs = dogs[:2]
for old_dog in old_dogs:
 print(old_dog)

del dogs[0]
dogs.remove('peso')
print(dogs)

