

Python Crash Course
A Hands-On, Project-Based

Introduction to Programming
nostarch.com/pythoncrashcourse2e

Multiple plots
You can include as many data series as you want in a
visualization. To do this, create one dictionary for each data
series, and put these dictionaries in the data list. Each of
these dictionaries is referred to as a trace in the Plotly
documentation.

Plotting squares and cubes
Here we use the 'name' attribute to set the label for each

from plotly.graph_objs import Scatter
from plotly import offline

x_values = list(range(11))
squares = [x**2 for x in x_values]
cubes = [x**3 for x in x_values]

data = [
 {
 # Trace 1: squares
 'type': 'scatter',
 'x': x_values,
 'y': squares,
 'name': 'Squares',
 },
 {
 # Trace 2: cubes
 'type': 'scatter',
 'x': x_values,
 'y': cubes,
 'name': 'Cubes',
 },
]

offline.plot(data,
 filename='squares_cubes.html')

What is Plotly?
Data visualization involves exploring data through
visual representations. Plotly helps you make visually
appealing representations of the data you’re working
with. Plotly is particularly well suited for visualizations
that will be presented online, because it supports
interactive elements.

Installing Plotly
Plotly runs on all systems, and can be installed in one line.

Installing Plotly
$ python -m pip install --user plotly

Line graphs, scatter plots, and bar graphs (cont.)
Making a bar graph
To make a bar graph, pass your data to the Bar() graph object.

from plotly.graph_objs import Bar
--snip--

data = [Bar(x=x_values, y=squares)]

Pass the data and a filename to plot().
offline.plot(data, filename='squares.html')

Beginner's Python
Cheat Sheet – Plotly

Line graphs, scatter plots, and bar graphs
To make a plot with Plotly, you specify the data and then
pass it to a graph object. The data is stored in a list, so you
can add as much data as you want to any graph.
 In offline mode, the output should open automatically in a
browser window.

Making a line graph
A line graph is a scatter plot where the points are connected.

from plotly.graph_objs import Scatter
from plotly import offline

Define the data.
x_values = list(range(11))
squares = [x**2 for x in x_values]

Pass the data to a graph object, and store it
in a list.
data = [Scatter(x=x_values, y=squares)]

Pass the data and a filename to plot().
offline.plot(data, filename='squares.html')

Making a scatter plot
To make a scatter plot, use the mode='markers' argument to tell
Plotly to only display the markers.

data = [Scatter(x=x_values, y=squares,
 mode='markers')]

Online resources
The Plotly documentation is extensive and well-organized.
Start with the overview at https://plot.ly/python/. Here you
can see an example of all the basic chart types, and click
on any example to see a relevant tutorial.
 Then take a look at the Python Figure Reference, at
https://plot.ly/python/reference/. Make sure to click on the
"How are Plotly attributes organized?" section. It's short, but
really helpful.

Specifying complex data
Data as a dictionary
Plotly is highly customizable, and most of that flexibility comes from
representing data and formatting directives as a dictionary. Here is
the same data from the previous examples, defined as a dictionary.
 Defining the data as a dictionary also allows you to specify more
information about each series. Anything that pertains to a specific
data series such as markers, lines, and point labels, goes in the
data dictionary. Plotly has several ways of specifying data, but
internally all data is represented in this way.

data = [{
 'type': 'scatter',
 'x': x_values,
 'y': squares,
 'mode': 'markers',
}]

Adding a title and labels
Using Layout objects
The Layout class allows you to specify titles, labels, and other
formatting directives for your visualizations.

from plotly.graph_objs import Scatter, Layout
from plotly import offline

x_values = list(range(11))
squares = [x**2 for x in x_values]

Add a title, and a label for each axis.
data = [Scatter(x=x_values, y=squares)]

title = 'Square Numbers'
x_axis_config = {'title': 'x'}
y_axis_config = {'title': 'Square of x'}

my_layout = Layout(title=title,
 xaxis=x_axis_config, yaxis=y_axis_config)

offline.plot(
 {'data': data, 'layout': my_layout},
 filename='squares.html')

Specifying complex layouts
You can also specify the layout of your visualization as a
dictionary, which gives you much more control of the overall
layout.

Layout as a dictionary
Here is the same layout we used earlier, written as a dictionary.
Simple elements such as the title of the chart are just key-value
pairs. More complex elements such as axes, which can have many
of their own settings, are nested dictionaries.

my_layout = {
 'title': 'Square Numbers',
 'xaxis': {
 'title': 'x',
 },
 'yaxis': {
 'title': 'Square of x',
 },
}

A more complex layout
Here is a layout for the same data, with more specific formatting
directives in the data and layout dictionaries.

from plotly.graph_objs import Scatter
from plotly import offline

x_values = list(range(11))
squares = [x**2 for x in x_values]

data = [{
 'type': 'scatter',
 'x': x_values,
 'y': squares,
 'mode': 'markers',
 'marker': {
 'size': 10,
 'color': '#6688dd',
 },
}]

my_layout = {
 'title': 'Square Numbers',
 'xaxis': {
 'title': 'x',
 'titlefont': {'family': 'monospace'},
 },
 'yaxis': {
 'title': 'Square of x',
 'titlefont': {'family': 'monospace'},
 },
}

offline.plot(
 {'data': data, 'layout': my_layout},
 filename='squares.html')

Specifying complex layouts (cont.)
Using a colorscale
Colorscales are often used to show variations in large datasets. In
Plotly, colorscales are set in the marker dictionary, nested inside a
data dictionary.

data = [{
 'type': 'scatter',
 'x': x_values,
 'y': squares,
 'mode': 'markers',
 'marker': {
 'colorscale': 'Viridis',
 'color': squares,
 'colorbar': {'title': 'Value'},
 },
}]

More cheat sheets available at
ehmatthes.github.io/pcc_2e/

Plotting global datasets
Plotly has a variety of mapping tools. For example, if you
have a set of points represented by latitude and longitude,
you can create a scatter plot of those points overlaying a
map.

The scattergeo chart type
Here's a map showing the location of three of the higher peaks in
North America. If you hover over each point, you'll see its location
and the name of the mountain.

from plotly import offline

Points in (lat, lon) format.
peak_coords = [
 (63.069, -151.0063),
 (60.5671, -140.4055),
 (46.8529, -121.7604),
]

Make matching lists of lats, lons,
and labels.
lats = [pc[0] for pc in peak_coords]
lons = [pc[1] for pc in peak_coords]
peak_names = ['Denali', 'Mt Logan',
 'Mt Rainier']

data = [{
 'type': 'scattergeo',
 'lon': lons,
 'lat': lats,
 'marker': {
 'size': 20,
 'color': '#227722',
 },
 'text': peak_names,
}]

my_layout = {
 'title': 'Selected High Peaks',
 'geo': {
 'scope': 'north america',
 'showland': True,
 'showocean': True,
 'showlakes': True,
 'showrivers': True,
 },
}

offline.plot(
 {'data': data, 'layout': my_layout},
 filename='peaks.html')

Using Subplots
It's often useful to have multiple plots share the same axes.
This is done using the subplots module.

Adding subplots to a figure
To use the subplots module, you make a figure to hold all the
charts that will be made. Then you use the add_trace() method
to add each data series to the overall figure.
 For more help, see the documentation at
https://plot.ly/python/subplots/.

from plotly.subplots import make_subplots
from plotly.graph_objects import Scatter
from plotly import offline

x_values = list(range(11))
squares = [x**2 for x in x_values]
cubes = [x**3 for x in x_values]

fig = make_subplots(rows=1, cols=2,
 shared_yaxes=True)

data = {
 'type': 'scatter',
 'x': x_values,
 'y': squares,
}
fig.add_trace(data, row=1, col=1)

data = {
 'type': 'scatter',
 'x': x_values,
 'y': cubes,
}
fig.add_trace(data, row=1, col=2)

offline.plot(fig, filename='subplots.html')

