

Beginner's Python
Cheat Sheet –
Dictionaries

Defining a dictionary
Use curly braces to define a dictionary. Use colons to
connect keys and values, and use commas to separate
individual key-value pairs.

Making a dictionary
alien_0 = {'color': 'green', 'points': 5}

Python Crash Course
A Hands-On, Project-Based

Introduction to Programming
nostarch.com/pythoncrashcourse2e

Looping through a dictionary
You can loop through a dictionary in three ways: you can
loop through all the key-value pairs, all the keys, or all the
values.
 Dictionaries keep track of the order in which key-value
pairs are added. If you want to process the information in a
different order, you can sort the keys in your loop.

Looping through all key-value pairs
Store people's favorite languages.
fav_languages = {
 'jen': 'python',
 'sarah': 'c',
 'edward': 'ruby',
 'phil': 'python',
 }

Show each person's favorite language.
for name, language in fav_languages.items():
 print(f"{name}: {language}")

Looping through all the keys
Show everyone who's taken the survey.
for name in fav_languages.keys():
 print(name)

Looping through all the values
Show all the languages that have been chosen.
for language in fav_languages.values():
 print(language)

Looping through all the keys in reverse order
Show each person's favorite language,
in reverse order by the person's name.
for name in sorted(fav_languages.keys(),
 reverse=True):
 print(f"{name}: language")

What are dictionaries?

Python's dictionaries allow you to connect pieces of
related information. Each piece of information in a
dictionary is stored as a key-value pair. When you
provide a key, Python returns the value associated
with that key. You can loop through all the key-value
pairs, all the keys, or all the values.

Accessing values
To access the value associated with an individual key give
the name of the dictionary and then place the key in a set of
square brackets. If the key you're asking for is not in the
dictionary, an error will occur.
 You can also use the get() method, which returns None
instead of an error if the key doesn't exist. You can also
specify a default value to use if the key is not in the
dictionary.

Getting the value associated with a key
alien_0 = {'color': 'green', 'points': 5}

print(alien_0['color'])
print(alien_0['points'])

Getting the value with get()
alien_0 = {'color': 'green'}

alien_color = alien_0.get('color')
alien_points = alien_0.get('points', 0)

print(alien_color)
print(alien_points)

Modifying values
You can modify the value associated with any key in a
dictionary. To do so give the name of the dictionary and
enclose the key in square brackets, then provide the new
value for that key.

Modifying values in a dictionary
alien_0 = {'color': 'green', 'points': 5}
print(alien_0)

Change the alien's color and point value.
alien_0['color'] = 'yellow'
alien_0['points'] = 10
print(alien_0)

Removing key-value pairs
You can remove any key-value pair you want from a
dictionary. To do so use the del keyword and the dictionary
name, followed by the key in square brackets. This will
delete the key and its associated value.

Deleting a key-value pair
alien_0 = {'color': 'green', 'points': 5}
print(alien_0)

del alien_0['points']
print(alien_0)

Adding new key-value pairs
You can store as many key-value pairs as you want in a
dictionary, until your computer runs out of memory. To add
a new key-value pair to an existing dictionary give the name
of the dictionary and the new key in square brackets, and
set it equal to the new value.
 This also allows you to start with an empty dictionary and
add key-value pairs as they become relevant.

Adding a key-value pair
alien_0 = {'color': 'green', 'points': 5}

alien_0['x'] = 0
alien_0['y'] = 25
alien_0['speed'] = 1.5

Adding to an empty dictionary
alien_0 = {}
alien_0['color'] = 'green'
alien_0['points'] = 5

Visualizing dictionaries
Try running some of these examples on pythontutor.com.

Dictionary length
You can find the number of key-value pairs in a dictionary.

Finding a dictionary's length
num_responses = len(fav_languages)

Nesting ‒ A list of dictionaries
It's sometimes useful to store a set of dictionaries in a list;
this is called nesting.

Storing dictionaries in a list
Start with an empty list.
users = []

Make a new user, and add them to the list.
new_user = {
 'last': 'fermi',
 'first': 'enrico',
 'username': 'efermi',
 }
users.append(new_user)

Make another new user, and add them as well.
new_user = {
 'last': 'curie',
 'first': 'marie',
 'username': 'mcurie',
 }
users.append(new_user)

Show all information about each user.
for user_dict in users:
 for k, v in user_dict.items():
 print(f"{k}: {v}")
 print("\n")

You can also define a list of dictionaries directly,
without using append():
Define a list of users, where each user
is represented by a dictionary.
users = [
 {
 'last': 'fermi',
 'first': 'enrico',
 'username': 'efermi',
 },
 {
 'last': 'curie',
 'first': 'marie',
 'username': 'mcurie',
 },
]

Show all information about each user.
for user_dict in users:
 for k, v in user_dict.items():
 print(f"{k}: {v}")
 print("\n")

Nesting ‒ Lists in a dictionary
Storing a list inside a dictionary allows you to associate
more than one value with each key.

Storing lists in a dictionary
Store multiple languages for each person.
fav_languages = {
 'jen': ['python', 'ruby'],
 'sarah': ['c'],
 'edward': ['ruby', 'go'],
 'phil': ['python', 'haskell'],
}

Show all responses for each person.
for name, langs in fav_languages.items():
 print(f"{name}: ")
 for lang in langs:
 print(f"- {lang}")

More cheat sheets available at
ehmatthes.github.io/pcc_2e/

Dictionary Comprehensions
A comprehension is a compact way of generating a
dictionary, similar to a list comprehension.
 To make a dictionary comprehension, define an
expression for the key-value pairs you want to make. Then
write a for loop to generate the values that will feed into this
expression.
 The zip() function matches each item in one list to each
item in a second list. It can be used to make a dictionary
from two lists.

Using loop to make a dictionary
squares = {}
for x in range(5):
 squares[x] = x**2

Using a dictionary comprehension
squares = {x:x**2 for x in range(5)}

Using zip() to make a dictionary
group_1 = ['kai', 'abe', 'ada', 'gus', 'zoe']
group_2 = ['jen', 'eva', 'dan', 'isa', 'meg']

pairings = {name:name_2
 for name, name_2 in zip(group_1, group_2)}

Nesting ‒ A dictionary of dictionaries
You can store a dictionary inside another dictionary. In this
case each value associated with a key is itself a dictionary.

Storing dictionaries in a dictionary
users = {
 'aeinstein': {
 'first': 'albert',
 'last': 'einstein',
 'location': 'princeton',
 },
 'mcurie': {
 'first': 'marie',
 'last': 'curie',
 'location': 'paris',
 },
 }

for username, user_dict in users.items():
 print("\nUsername: " + username)
 full_name = user_dict['first'] + " "
 full_name += user_dict['last']
 location = user_dict['location']

 print(f"\tFull name: {full_name.title()}")
 print(f"\tLocation: {location.title()}")

Levels of nesting
Nesting is extremely useful in certain situations. However,
be aware of making your code overly complex. If you're
nesting items much deeper than what you see here there
are probably simpler ways of managing your data, such as
using classes.

Generating a million dictionaries
You can use a loop to generate a large number of
dictionaries efficiently, if all the dictionaries start out with
similar data.

A million aliens
aliens = []

Make a million green aliens, worth 5 points
each. Have them all start in one row.
for alien_num in range(1000000):
 new_alien = {}
 new_alien['color'] = 'green'
 new_alien['points'] = 5
 new_alien['x'] = 20 * alien_num
 new_alien['y'] = 0
 aliens.append(new_alien)

Prove the list contains a million aliens.
num_aliens = len(aliens)

print("Number of aliens created:")
print(num_aliens)

