<table>
<thead>
<tr>
<th>CONTENTS OF VOLUME 104</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. T. HOUGHTON—The stratosphere and mesosphere—Presidential Address</td>
</tr>
<tr>
<td>B. J. HOSKINS, I. DRAGHICI and H. C. DAVIES—A new look at the ( \omega )-equation</td>
</tr>
<tr>
<td>P. C. MANINS and J. S. TURNER—The relation between the flux ratio and energy ratio in convectively mixed layers</td>
</tr>
<tr>
<td>P. G. BAINES and J. S. FREDERIKSEN—Baroclinic instability on a sphere in two-layer models</td>
</tr>
<tr>
<td>BRUNO FEDERER and ALBERT WALDVOGEL—Time-resolved hailstone analyses and radar structure of Swiss storms</td>
</tr>
<tr>
<td>B. G. HUNT—On the general circulation of the atmosphere without clouds</td>
</tr>
<tr>
<td>D. J. GAUNTLETT, L. M. LESLIE, J. L. MCGREGOR and D. R. HINCKSMAN—A limited area nested numerical weather prediction model: Formulation and preliminary results</td>
</tr>
<tr>
<td>JOHN S. JENSENIS, JOHN J. CAHIR and HAN S. PANOFSKY—Estimation of outgoing longwave radiation from meteorological variables accessible from numerical models</td>
</tr>
<tr>
<td>C. HAWORTH—Some relationships between sea surface temperature anomalies and surface pressure anomalies</td>
</tr>
<tr>
<td>S. J. CAUGHEY, B. A. CREASE, D. N. ASIMAKOPOULOS and R. S. COLE—Quantitative bistatic acoustic sounding of the atmospheric boundary layer</td>
</tr>
<tr>
<td>B. J. P. MARSHALL, J. LATHAM and C. P. R. SAUNDERS—A laboratory study of charge transfer accompanying the collision of ice crystals with a simulated hailstone</td>
</tr>
<tr>
<td>J. C. PFLAUM, J. J. MARTIN and H. R. PRUPPACHER—A wind tunnel investigation of the hydrodynamic behaviour of growing, freely falling graupel</td>
</tr>
<tr>
<td>R. K. SMITH and L. M. LESLIE—Tornadogenesis</td>
</tr>
<tr>
<td>J. R. GARRATT—Flux profile relations above tall vegetation</td>
</tr>
<tr>
<td>W. A. CHAPMAN and J. MCGREGOR—The application of complex demodulation to meteorological satellite data</td>
</tr>
<tr>
<td>Notes and Correspondence—</td>
</tr>
<tr>
<td>P. HYSON—Stratospheric water vapour measurements over Australia 1973–1976</td>
</tr>
<tr>
<td>N. NICHOLLS—Comment on the paper ‘On the application of some stochastic models to precipitation forecasting’ by T. G. J. DYER. With reply</td>
</tr>
</tbody>
</table>

| R. A. S. RATCLIFFE, J. WELLER and P. COLLISON—Variability in the frequency of unusual weather over approximately the last century | 243 |
| B. SAUGIER and E. A. RIPLEY—Evaluation of the aerodynamic method of determining fluxes over natural grassland | 257 |
| A. BUZZI and S. TIBALDI—Cyclogenesis in the lee of the Alps: A case study | 271 |
| P. W. M. BRIGHTON—Strongly stratified flow past three-dimensional obstacles | 289 |
| M. R. RAUPACH—Infrared fluctuation hygrometry in the atmospheric surface layer | 309 |
| S. C. MOSSOP—The influence of drop size distribution on the production of secondary ice particles during graupel growth | 323 |
| G. J. SHUTTS—Quasi-geostrophic planetary wave forcing | 331 |
| NIELS OTTO JENSEN—Change of surface roughness and the planetary boundary layer | 351 |
| G. J. DALRYMPLE and M. H. UNSWORTH—Longwave radiation at the ground: III. A radiometer for the ‘representative angle’ | 357 |
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. W. DALY—The response of North Atlantic sea surface temperature to atmospheric forcing processes</td>
<td>363</td>
</tr>
<tr>
<td>D. H. WOOD—Calculation of the neutral wind profile following a large step change in surface roughness</td>
<td>383</td>
</tr>
<tr>
<td>E. C. KUNG and H. A. BURGDORF—Maintenance of kinetic energy in large-scale tropical disturbances over the eastern Atlantic</td>
<td>393</td>
</tr>
<tr>
<td>M. J. MILLER—The Hampstead storm: A numerical simulation of a quasi-stationary cumulonimbus system</td>
<td>413</td>
</tr>
<tr>
<td>JOHN H. E. CLARK—The stability of ultra-long waves on a mid-latitude β-plane</td>
<td>429</td>
</tr>
<tr>
<td>W. GASKELL, A. J. ILLINGWORTH, J. LATHAM and C. B. MOORE—Airborne studies of electric fields and the charge and size of precipitation elements in thunderstorms</td>
<td>447</td>
</tr>
<tr>
<td>KLAUS FRAEDRICH—Structural and stochastic analysis of a zero-dimensional climate system</td>
<td>461</td>
</tr>
<tr>
<td>P. J. MASON and R. I. SYKES—On the interaction of topography and Ekman boundary layer pumping in a stratified atmosphere</td>
<td>475</td>
</tr>
<tr>
<td>J. R. GARRATT—Transfer characteristics for a heterogeneous surface of large aerodynamic roughness</td>
<td>491</td>
</tr>
<tr>
<td>M. J. OLIVER and A. P. CLULEY—A systematic error in the measurement of frost point using a Meteorological Office Mk 3 hygrometer</td>
<td>503</td>
</tr>
<tr>
<td>A. P. CLULEY and M. J. OLIVER—Aircraft measurements of humidity in the low stratosphere over southern England 1972–1976</td>
<td>511</td>
</tr>
</tbody>
</table>

Notes and Correspondence—


<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. W. MONCREIFF—The dynamical structure of two-dimensional steady convection in constant vertical shear</td>
<td>543</td>
</tr>
<tr>
<td>A. J. GADD—A split explicit integration scheme for numerical weather prediction</td>
<td>569</td>
</tr>
<tr>
<td>A. J. GADD—A numerical advection scheme with small phase speed errors</td>
<td>583</td>
</tr>
<tr>
<td>A. J. SIMMONDS—Some effects of meridional shear and spherical geometry on long stratospheric waves</td>
<td>595</td>
</tr>
<tr>
<td>C. G. COLLIER and P. R. LARKE—A case study of the measurement of snowfall by radar: an assessment of accuracy</td>
<td>615</td>
</tr>
<tr>
<td>B. G. GARDINER—Generalized treatment of particulate scattering in Dobson ozone spectrophotometer calculations</td>
<td>623</td>
</tr>
<tr>
<td>JOHN HALLETT, ROBERT I. SAX, DENNIS LAMB and A. S. RAMACHANDRA MURTY—Aircraft measurements of ice in Florida cumuli</td>
<td>631</td>
</tr>
<tr>
<td>S. NICHOLLS—Measurements of turbulence by an instrumented aircraft in a convective atmospheric boundary layer over the sea</td>
<td>653</td>
</tr>
<tr>
<td>HILDING SUNDBOIST—A parameterization scheme for non-convective condensation including prediction of cloud water content</td>
<td>677</td>
</tr>
<tr>
<td>R. O. R. Y. THOMPSON—Observation of inertial waves in the stratosphere</td>
<td>691</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niels Otto Jensen and Ernest W. Peterson</td>
<td>On the escarpment wind profile</td>
<td>719</td>
</tr>
<tr>
<td>R. C. Corbin, J. Latham, C. S. Miller and I. M. Stromberg</td>
<td>An assessment of the Kelly probe for the ground-based measurement of drop size distributions in clouds</td>
<td>729</td>
</tr>
<tr>
<td>R. P. Pearce</td>
<td>On the concept of available potential energy</td>
<td>737</td>
</tr>
<tr>
<td>Herbert Ruhl and Alan H. Miller</td>
<td>Differences between morning and evening temperatures of cloud tops over tropical continents and oceans</td>
<td>757</td>
</tr>
<tr>
<td>Clive E. Dorman and Robert H. Bourke</td>
<td>A temperature correction for Tucker's ocean rainfall estimates</td>
<td>765</td>
</tr>
<tr>
<td>Michael A. Box and Bruce H. J. McKellar</td>
<td>Direct evaluation of aerosol mass loadings from multispectral extinction data</td>
<td>775</td>
</tr>
<tr>
<td>A. Mignan, G. Fiocco and G. Grams</td>
<td>Effects of aerosol optical properties and size distributions on heating rates induced by stratospheric aerosols</td>
<td>783</td>
</tr>
<tr>
<td>G. A. Dalu</td>
<td>A parameterization of heat convection for a numerical sea breeze model</td>
<td>797</td>
</tr>
<tr>
<td>Notes and Correspondence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinald E. Newell and Michel Verstraete</td>
<td>Comment on the paper 'Relative role of atmosphere and ocean in the global heat budget: tropical Atlantic and eastern Pacific' by Stefan Hassenrath (Q.J., 1977, 103, 519-526) With reply</td>
<td>809</td>
</tr>
<tr>
<td>J. S. Frederiksen</td>
<td>Instability of planetary waves and zonal flows in two-layer models on a sphere</td>
<td>841</td>
</tr>
<tr>
<td>Alan J. Thorpe and Martin J. Miller</td>
<td>Numerical simulations showing the role of the downdraught in cumulonimbus motion and splitting</td>
<td>873</td>
</tr>
<tr>
<td>F. H. Berkshire and A. O. Pickersgill</td>
<td>Resonance characteristics of linear lee waves in an atmosphere of three layers</td>
<td>895</td>
</tr>
<tr>
<td>H. A. McCartney</td>
<td>Spectral distribution of solar radiation. II: global and diffuse</td>
<td>911</td>
</tr>
<tr>
<td>G. W. Patridge</td>
<td>The steady-state format of global climate</td>
<td>927</td>
</tr>
<tr>
<td>B. Gjøvik and T. Martthunsen</td>
<td>Three-dimensional lee-wave pattern</td>
<td>947</td>
</tr>
<tr>
<td>M. A. Box, S. Y. Lo, B. H. J. McKellar and M. Reich</td>
<td>The application of the Rayleigh-Gans approximation to scattering by polydispersions</td>
<td>959</td>
</tr>
<tr>
<td>Daniel Cadet and Paul Olory-Togbé</td>
<td>Low-level air flow circulation over the Arabian Sea during the summer monsoon as deduced from satellite-tracked superpressure balloons. Part II - Analysis of the flow field</td>
<td>971</td>
</tr>
<tr>
<td>P. A. Taylor and P. R. Gent</td>
<td>A numerical investigation of variations in the drag coefficient for air flow above water waves</td>
<td>979</td>
</tr>
<tr>
<td>G. J. Dalrymple and M. H. Unsworth</td>
<td>Longwave radiation at the ground: IV. Comparison of measurement and calculation of radiation from cloudless skies</td>
<td>989</td>
</tr>
</tbody>
</table>
Notes and Correspondence—

REGINALD E. NEWELL and MAO-FOU Wu—A pilot study of concomitant changes in total ozone and atmospheric general circulation .................................................. 999

J. C. CURRAN—Comment on the paper 'Vertical heat flux in the convective boundary layer' by S. J. Caughey and J. C. Kaimal (Q.J., 103, 811–815) ...................................... 1003