H. CHARNOCK—Ocean currents and meridional transfers ... 3
BURGHARD BRÜMMER and MELCHIOR WENDEL—Observations of intermittent cumulus
convection in the boundary layer .. 19
J. D. TURTON and R. BROWN—A comparison of a numerical model of radiation fog with
detailed observations .. 37
OTTO ZEMAN and NIELS OTTO JENSEN—Modification of turbulence characteristics in flow
over hills .. 55
T. MIKKELSEN, S. E. LARSEN and H. L. PECSELI—Diffusion of Gaussian puffs 81
M. R. RAUPACH—A Lagrangian analysis of scalar transfer in vegetation canopies 107
J. DUDHIA, M. W. MONCRIEFF and D. W. K. SO—The two-dimensional dynamics of West
African squall lines ... 121
WAYNE H. SCHUBERT and BRIAN T. ALWORTH—Evolution of potential vorticity in tropical
cyclones .. 147
M. J. P. CULLEN, S. CHYNOWETH and R. J. PURSER—On semi-geostrophic flow over
synoptic-scale topography ... 163
HARALD LEIJENAS—A comparative study of southern hemisphere blocking during the Global
Weather Experiment .. 181
BERNARD L. MILLER and DAYTON G. VINCENT—Convective heating and precipitation
estimates for the tropical South Pacific during FGGE, 10–18 January 1979 189
P. J. PHILPS and A. E. GILL—An analytic model of the heat-induced tropical circulation in
the presence of a mean wind .. 213
RICHARD L. PFEFFER—Comparison of conventional and transformed Eulerian diagnostics
in the troposphere ... 237
DAVID A. SALSTEIN, RICHARD D. ROSEN, WAYMAN E. BAKER and EUGENIA KALNAY—
Impact of satellite-based data on FGGE general circulation statistics 255
J. R. EYRE—On systematic errors in satellite sounding products and their climatological
mean values .. 279
J. F. B. MITCHELL, C. A. WILSON and W. M. CUNNINGTON—On CO₂ climate sensitivity
and model dependence of results .. 293
DAVID G. ANDREWS—On the interpretation of the Eliassen–Palm flux divergence 323
PRASHANT D. SARDESHMUKH and BRIAN J. HOSKINS—On the derivation of the divergent
flow from the rotational flow: The χ problem. .. 339
J. AUSTIN, R. C. PALLISTER, J. A. PYLE, A. F. TUCK and A. M. ZAVODY—Photochemical
model comparisons with LIMS observations in a stratospheric trajectory coordinate
system .. 361
A. R. WEBB and M. D. STEVEN—Solar ultraviolet-B radiation under cloudless skies 393
Notes and Correspondence
Comments on ‘On the use and significance of isentropic potential vorticity maps’ by
B. J. Hoskins, M. E. McIntyre and A. W. Robertson (October 1985, 111, 877–946)
by J. S. A. Green. Reply by authors .. 401

P. J. MASON and D. J. THOMSON—Large-eddy simulations of the neutral-static-stability
planetary boundary layer ... 413
JOACHIM P. KUETTNER, PETER A. HILDEBRAND and TERRY L. CLARK—Convection waves:
Observations of gravity wave systems over convectively active boundary layers 445
A. J. ILLINGWORTH, J. W. F. GODDARD and S. M. CHERRY—Polarization radar studies of
precipitation development in convective storms .. 469
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. J. BADER, S. A. CLOUGH and G. P. COX—Aircraft and dual polarization radar observations of hydrometeors in light stratiform precipitation</td>
<td>491</td>
</tr>
<tr>
<td>ANNE KITE—The albedo of broken cloud fields</td>
<td>517</td>
</tr>
<tr>
<td>D. B. SHAW, P. LÖNNEBERG, A. HOLLINGSWORTH and P. UNDEN—Data assimilation: The 1984/85 revisions of the ECMWF mass and wind analysis</td>
<td>533</td>
</tr>
<tr>
<td>DHIREN德拉 N. SIKDAR and JAMES B. ELSNER—Large-scale circulation departures related to wet episodes in north-east Brazil</td>
<td>567</td>
</tr>
<tr>
<td>D. L. CADET and N. O. NNOLE—Water vapour transport over Africa and the Atlantic Ocean during summer 1979</td>
<td>581</td>
</tr>
<tr>
<td>K. P. SHINE—The middle atmosphere in the absence of dynamical heat fluxes</td>
<td>603</td>
</tr>
<tr>
<td>L. J. GRAY and J. A. PYLE—Two-dimensional model studies of equatorial dynamics and tracer distributions</td>
<td>635</td>
</tr>
<tr>
<td>G. D. ROBINSON and M. G. ATTICKS SCHOPEN—The formation and movement in the stratosphere of very dry air</td>
<td>653</td>
</tr>
<tr>
<td>KEITH HAINES and JOHN MARSHALL—Eddy-forced coherent structures as a prototype of atmospheric blocking</td>
<td>681</td>
</tr>
<tr>
<td>KIRK BRYAN—Potential vorticity in models of the ocean circulation</td>
<td>713</td>
</tr>
<tr>
<td>M. J. P. CULLEN, J. NORBURY, R. J. PURSER and G. J. SHUTTS—Modelling the quasi-equilibrium dynamics of the atmosphere</td>
<td>735</td>
</tr>
<tr>
<td>B. J. HOSKINS and P. D. SARDESHMUKH—A diagnostic study of the dynamics of the northern hemisphere winter of 1985/86</td>
<td>759</td>
</tr>
<tr>
<td>IAN G. WATTERTON and EDWIN K. SCHNEIDER—The effect of the Hadley circulation on the meridional propagation of stationary waves</td>
<td>779</td>
</tr>
<tr>
<td>W. T. BLACKSHEAR, W. L. GROSE and R. E. TURNER—Simulated sudden stratospheric warmings; synoptic evolution</td>
<td>815</td>
</tr>
<tr>
<td>A. SLINGO and D. W. PEARSON—A comparison of the impact of an envelope orography and of a parametrization of orographic gravity-wave drag on model simulations</td>
<td>847</td>
</tr>
<tr>
<td>A. P. M. BAEDER, P. KÄLLBERG and S. UPPALA—Impact of aircraft wind data on ECMWF analyses and forecasts during the FGGE period, 8–19 November 1979</td>
<td>871</td>
</tr>
<tr>
<td>JULIA M. SLINGO—The development and verification of a cloud prediction scheme for the ECMWF model</td>
<td>899</td>
</tr>
<tr>
<td>J. DUDHIA and M. W. MONCRIEFF—A numerical simulation of quasi-stationary tropical convective bands</td>
<td>929</td>
</tr>
<tr>
<td>J. D. TURTON and S. NICOLLS—A study of the diurnal variation of stratocumulus using a multiple mixed layer model</td>
<td>969</td>
</tr>
<tr>
<td>P. HIGNETT—A study of the short-wave radiative properties of marine stratus: Aircraft measurements and model comparisons</td>
<td>1011</td>
</tr>
<tr>
<td>C. TEMPERTON and A. STANIFORTH—An efficient two-time-level semi-Lagrangian semi-implicit integration scheme</td>
<td>1025</td>
</tr>
<tr>
<td>STEVEN SKUBIS and JOHN MOLINARI—Angular momentum variation in a translating cyclone</td>
<td>1041</td>
</tr>
<tr>
<td>GLORIA L. MANNEY and JOHN L. STANFORD—On the relation of 6.7 μm water vapour features to isentropic distributions of potential vorticity</td>
<td>1048</td>
</tr>
<tr>
<td>J. E. M. HAMILTON—The effect of variable boundary conditions on the accuracy of limited area numerical forecasts</td>
<td>1057</td>
</tr>
</tbody>
</table>
Qin Xu and Lang-Ping Chang—On the two-dimensional steady upshear-sloping convection 1065
M. V. Young, G. A. Monk and K. A. Browning—Interpretation of satellite imagery of a rapidly deepening cyclone 1089
P. J. Mason—Diurnal variation in flow over a succession of ridges and valleys 1117
S. Nicholls—A model of drizzle growth in warm, turbulent, stratiform clouds 1141
I. J. Caylor and A. J. Illingworth—Radar observations and modelling of warm rain initiation 1171
T. A. Hill, A. Jones and T. W. Choularton—Modelling sulphate deposition onto hills by washout and turbulence 1219
M. K. Davey and A. E. Gill—Experiments on tropical circulation with a simple moist model 1237
H.-Y. Weng and A. Barcilon—Wave structure and evolution in baroclinic flow regimes 1271
P. J. Phillips and A. E. Gill—Lateral boundaries and the heat-induced flow in the tropical atmosphere 1295
Olivier Talandrant and Philippe Courtier—Variational assimilation of meteorological observations with the adjoint vorticity equation. Part 1: Theory 1311
Philippe Courtier and Olivier Talandrant—Variational assimilation of meteorological observations with the adjoint vorticity equation. Part 2: Numerical results 1329
J. R. Eyre and P. D. Watts—A sequential estimation approach to cloud-clearing for satellite temperature soundings 1369
K. D. Beheng—Microphysical properties of glaciating cumulus clouds: comparison of measurements with a numerical simulation 1377
T. Miles, W. L. Grose, J. M. Russell III and E. E. Remsberg—Comparison of southern hemisphere radiosondes and LIMS temperatures at 100 mb 1382
G. J. Shutt—Some comments on the concept of thermal forcing 1389
B. J. Burton—Comments on 'On the development of orographic cyclones' by D. Radinovic. Reply by author 1394
I. Simmonds and M. Dix—Comment on paper 'Sea ice and the antarctic winter circulation: A numerical experiment' by J. F. R. Mitchell and T. S. Hills. Reply by authors 1396