<table>
<thead>
<tr>
<th>CONTENTS OF VOLUME 115</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. F. B. MITCHELL and C. A. SENIOR—The antarctic winter; simulations with climatological and reduced sea-ice extents 225</td>
</tr>
<tr>
<td>HUANG-HSIUNG HSU and BRIAN J. HOSKINS—Tidal fluctuations as seen in ECMWF data 247</td>
</tr>
<tr>
<td>KEITI SHINE—Sources and sinks of zonal momentum in the middle atmosphere diagnosed using the diabatic circulation 265</td>
</tr>
<tr>
<td>P. G. BAINES and B. P. LEONARD—The effects of rotation on flow of a single layer over a ridge 293</td>
</tr>
<tr>
<td>THOMAS HAUF and TERRY L. CLARK—Three-dimensional numerical experiments on convectively forced internal gravity waves 309</td>
</tr>
<tr>
<td>CHEN FAZU and PETER SCHWERDTFEGER—Flux-gradient relationships for momentum and heat over a rough natural surface 335</td>
</tr>
<tr>
<td>FRED W. DOBSON and STUART D. SMITH—A comparison of incoming solar radiation at marine and continental stations 353</td>
</tr>
<tr>
<td>F. RAWLINS—Aircraft measurements of the solar absorption by broken cloud fields: A case study 365</td>
</tr>
<tr>
<td>M. H. SMITH, I. E. CONSTERDINE and P. M. PARK—Atmospheric loadings of marine aerosol during a Hebridean cyclone 383</td>
</tr>
<tr>
<td>ROBERT A. HOUZE, JR.—Observed structure of mesoscale convective systems and implications for large-scale heating 425</td>
</tr>
<tr>
<td>N. G. PREZERAKOS and S. C. MICHAELIDES—A composite diagnosis in sigma coordinates of the atmospheric energy balance during intense cycloonic activity 463</td>
</tr>
<tr>
<td>S. NICHOLLS—The structure of radiatively driven convection in stratocumulus 487</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALAIN JOLY and ALAN J. THORPE—Warm and occluded fronts in two-dimensional moist baroclinic instability</td>
<td>513</td>
</tr>
<tr>
<td>W. WERGEN—Normal mode initialization and atmospheric tides</td>
<td>535</td>
</tr>
<tr>
<td>RAYMOND W. ARRIFF—Numerical modelling of the offshore extent of sea breezes</td>
<td>547</td>
</tr>
<tr>
<td>GREG J. HOLLAND and JOHN L. McBRIE—Quasi-trajectory analysis of a sea-breeze front</td>
<td>571</td>
</tr>
<tr>
<td>J. FINDLATER, W. T. ROACH and B. C. MCHugh—The haer of north-east Scotland</td>
<td>581</td>
</tr>
<tr>
<td>M. R. RAUPACH—A practical Lagrangian method for relating scalar concentrations to source distributions in vegetation canopies</td>
<td>609</td>
</tr>
<tr>
<td>WOJCIECH W. GRABOWSKI—On the influence of small-scale topography on precipitation</td>
<td>633</td>
</tr>
<tr>
<td>R. W. SAUNDERS—A comparison of satellite-retrieved parameters with mesoscale model analyses</td>
<td>651</td>
</tr>
<tr>
<td>M. KITCHEN—Representativeness errors for radiosonde observations</td>
<td>673</td>
</tr>
<tr>
<td>Notes and Correspondence</td>
<td></td>
</tr>
<tr>
<td>M. W. GALLAGHER and T. W. CHOUARTON—The effect of solar radiation on occult deposition over hills</td>
<td>701</td>
</tr>
<tr>
<td>K. A. BROWNING—The mesoscale data base and its use in mesoscale forecasting</td>
<td>717</td>
</tr>
<tr>
<td>RICHARD A. ANTHEES, YING-HWA KUO, EIRIH-YU HSIE, SIMON LOW-NAM and THOMAS W. BETTGE—Estimation of skill and uncertainty in regional numerical models</td>
<td>763</td>
</tr>
<tr>
<td>S. PAWSON and R. S. HARWOOD—Monthly-mean diabatic circulations in the stratosphere</td>
<td>807</td>
</tr>
<tr>
<td>JOHN AUSTIN and NEAL BUTCHART—A study of air particle motions during a stratospheric warming and their influence on photochemistry</td>
<td>841</td>
</tr>
<tr>
<td>DEAN A. HEGG, STEVEN A. RUTLEDGE, PETER V. HOBBS, MARY C. BARTHE AND OWEN HERTZMAN—The chemistry of a mesoscale rainband</td>
<td>867</td>
</tr>
<tr>
<td>P. RIPA and S. G. MARINONE—Seasonal variability of temperature, salinity, velocity, vorticity and sea level in the central Gulf of California, as inferred from historical data</td>
<td>887</td>
</tr>
<tr>
<td>S. D. MOBBS and M. S. DARBY—A general method for the linear stability analysis of stratified shear flows</td>
<td>915</td>
</tr>
<tr>
<td>JAMES W. ROTTMAN and JOHN E. SIMPSON—The formation of internal bores in the atmosphere: A laboratory model</td>
<td>941</td>
</tr>
<tr>
<td>R. O. PITT and T. J. LYONS—Airflow over a two-dimensional escarpment. I: Observations</td>
<td>965</td>
</tr>
<tr>
<td>R. RICHIARDONE and G. BRUSASCA—Numerical experiments on urban heat island intensity</td>
<td>983</td>
</tr>
<tr>
<td>Notes and Correspondence</td>
<td></td>
</tr>
<tr>
<td>ALAN K. BETTS—Mean inversion strength of the convective boundary layer over the oceans</td>
<td>997</td>
</tr>
<tr>
<td>J. R. EYRE—Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I: Theory and simulation for TOVS</td>
<td>1001</td>
</tr>
<tr>
<td>J. R. EYRE—Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. II: Application of TOVS data</td>
<td>1027</td>
</tr>
<tr>
<td>GRANT R. BIGG and JEFFREY R. BLUNDELL—The equatorial Pacific Ocean prior to and during El Niño of 1982/83—a normal mode model view</td>
<td>1039</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>MICHAEL K. DAVEY—A simple tropical moist model applied to the ‘40-day’ wave</td>
<td>1071</td>
</tr>
<tr>
<td>M. J. P. CULLEN—On the incorporation of atmospheric boundary layer effects into a balanced model</td>
<td>1109</td>
</tr>
<tr>
<td>GERALD D. BELL and LANCE F. BOSART—The large-scale atmospheric structure accompanying New England coastal frontogenesis and associated North American east coast cyclogenesis</td>
<td>1133</td>
</tr>
<tr>
<td>A. C. L. LEE—Ground truth confirmation and theoretical limits of an experimental VLF arrival time difference lightning flash locating system</td>
<td>1147</td>
</tr>
<tr>
<td>ZAVIŠA I. JANJIĆ and FEDOR MESINGER—Response to small-scale forcing on two staggered grids used in finite-difference models of the atmosphere</td>
<td>1167</td>
</tr>
<tr>
<td>Notes and Correspondence</td>
<td></td>
</tr>
<tr>
<td>P. H. HAYNES and T. G. SHEPHERD—The importance of surface pressure changes in the response of the atmosphere to zonally-symmetric thermal and mechanical forcing</td>
<td>1181</td>
</tr>
<tr>
<td>D. GREGORY and M. J. MILLER—A numerical study of the parametrization of deep tropical convection</td>
<td>1209</td>
</tr>
<tr>
<td>A. A. WHITE—An extended version of a nonhydrostatic, pressure coordinate model</td>
<td>1243</td>
</tr>
<tr>
<td>FRANKLIN R. ROBERTSON, DAYTON G. VINCENT and DEIRDRE M. KANN—The role of diabatic heating in maintaining the upper-tropospheric baroclinic zone in the South Pacific</td>
<td>1253</td>
</tr>
<tr>
<td>C. A. REDDY and LEKSHMI VIJAYAN—Reflection and attenuation of equatorial waves in the stratosphere and mesosphere</td>
<td>1273</td>
</tr>
<tr>
<td>BIN WANG and JIUKANG CHEN—On the zonal-scale selection and vertical structure of equatorial intraseasonal waves</td>
<td>1301</td>
</tr>
<tr>
<td>QIN XU—Frontal circulations in the presence of small viscous moist symmetric stability and weak forcing</td>
<td>1325</td>
</tr>
<tr>
<td>YAPING SHAO and MICHAEL HANTEL—Vertical subsynoptic momentum flux in the atmosphere over central Europe</td>
<td>1355</td>
</tr>
<tr>
<td>W. PERRIE, H. GÜNTHER, W. ROSENTHAL and B. TOULANY—Modelling wind-generated surface gravity waves using similarity in a coupled discrete wave model</td>
<td>1373</td>
</tr>
<tr>
<td>D. J. RAYMOND and A. M. BLYSTH—Precipitation development in a New Mexico thunderstorm</td>
<td>1397</td>
</tr>
</tbody>
</table>