Extended-range predictions with ECMWF models: Influence of horizontal resolution on systematic error and forecast skill

By S. TIBALDI*, T. N. PALMER, Č. BRANKOVIĆ and U. CUBASCH**

European Centre for Medium Range Weather Forecasts, Reading

(Received 28 June 1989; revised 24 January 1990)

SUMMARY

The influence of horizontal resolution on model systematic error and skill scores are examined for both winter and summer seasons from a set of extended-range integrations of the European Centre for Medium Range Weather Forecasts (ECMWF) numerical weather prediction model. The forecast data are composed of 24 30-day integrations, two per month from successive 12 GMT operational analyses, from April 1985 to March 1986 at four (triangular truncation) horizontal spectral resolutions of T21, T42, T63 and T106.

Systematic errors in wind, temperature, heat and momentum fluxes are discussed, both in the tropics and extratropics. Dynamical reasons for differences between various model resolutions and between simulations and observations are proposed. Diagnosis of model systematic error is aided by comparing zonal-mean diagnostics of the observed flow in the northern hemisphere winter and southern hemisphere winter. The impact of resolution on regional simulations of rainfall during the Indian and African monsoons is also discussed.

In the extratropical troposphere, the behaviour of the T21 model is quite distinct from the higher-resolution models. The southern hemisphere flow is weak, and in both hemispheres horizontal momentum fluxes are severely underestimated. The systematic errors of the T42, T63 and T106 models are quite similar to each other in the extratropical troposphere. Errors at these higher resolutions resemble the observed difference (in zonal-mean wind, temperature and eddy fluxes) between diagnostics in the northern hemisphere winter and southern hemisphere winter, suggesting that orographic forcing in this version of the ECMWF model is inadequate, despite the inclusion of envelope orography.

In the extratropical stratosphere, the behaviours of the T21 and T42 models resemble each other, both having a cold polar bias, apparently associated with inadequate dynamical heating and therefore relaxation to radiative equilibrium. This in turn is related to insufficient Rossby wave focusing into the polar vortex at T21 and T42. The T63 and T106 resolution integrations have much smaller stratospheric cold-pole biases.

In the tropics, there are serious systematic errors at all resolutions; however, some of these mean errors increase with increasing resolution. These include the global divergent and nondivergent wind errors, and more regional simulations such as the monsoon flow, where simulation of diabatic heating associated with convective activity is crucial. Since the local values of moisture flux convergence at T106 are effectively much noisier than the larger-scale values of such fluxes used to drive the convection scheme at T21, it is speculated that diabatic heating fields are more likely to project onto the relevant tropical meteorological modes at low model resolution. On the other hand, it is shown that the ability to resolve local orographic features is important in accurately simulating local tropical precipitation maxima over land.

Despite having smaller systematic errors in the northern hemisphere, 10-day mean T21 model anomaly correlation coefficient scores were worse than those of higher-resolution models, at least up to day 20. However, there was no indication that the higher-resolution models had significantly different extended-range skill characteristics. On the other hand, the increase of tropical systematic error with increasing horizontal resolution may indicate that the potential of higher-resolution models in extended-range prediction may be underestimated in this study. The asymptotic spread between forecasts initialized 24 hours apart indicated that all models substantially underestimated low-frequency variability (by up to 50% in the extended summer period).

Bearing in mind the computational burden of longer timescale integrations with complex numerical models of the atmosphere, the evidence presented in this paper suggests that the T106 resolution may be unnecessarily high for both extended-range forecasting, and for climate simulation studies. However, at present, the cost of integrating at T63 resolution may also be excessive for many climate studies. It would appear from our analysis, that in the troposphere the behaviour of the T42 model is comparable with the higher-resolution models, and is a satisfactory compromise for many purposes, particularly bearing in mind the impact of resolution on tropical systematic errors.

However, it would appear that the extreme sensitivity of the 1985/86 ECMWF model climate drift to resolution in the range between T21 and T42, and the apparent inability of the ECMWF T21 model to simulate the correct internal nonlinear dynamics of the extratropics, make questionable its use for climate studies at resolution lower than T42.

* Current affiliation: Department of Physics, University of Bologna, Via Irnerio 46, 40126 Bologna, Italy.
** Current affiliation: Max-Planck Institut für Meteorologie, Bundesstrasse 55, D-2000 Hamburg 13, Federal Republic of Germany.
1. INTRODUCTION

There is considerable interest in atmospheric prediction beyond the limit of instantaneous deterministic predictability, normally assumed to be about 2 weeks. Because of considerable improvements in the formulation of numerical weather prediction (NWP) models, the systematic component of forecast error often does not reach large amplitude until well into the extended range. Diagnosis of such error can therefore be facilitated by the study of extended-range integrations.

In addition, interest has been growing in the potential of monthly timescale weather prediction as an operational forecasting product (e.g. the companion paper by Palmer et al., 1990, hereafter referred to as P, and references therein), where even modestly skilful extended-range forecasts of time-mean fields may nevertheless be of considerable value. The development of probabilistic extended-range forecasts using ensembles of integrations (see, for example, the companion paper by Branković et al., 1990, hereafter referred to as B) may provide a more useful product and so greatly widen the spectrum of potential users. Furthermore, because of the availability of more powerful supercomputers, models designed primarily for weather prediction are increasingly being used for climate-time-scale simulations. Diagnosis of extended-range systematic error in NWP models is an important indicator of the model’s climate bias.

Ensembles of integrations of NWP models for extended-range prediction (as in B) can be computationally demanding, and for efficiency purposes one would wish to integrate the model at the minimum resolution likely to give useful results. On the other hand, bearing in mind the objectives discussed above, it is important that systematic errors of the model used for extended-range prediction should be representative of the model used for operational shorter-range forecasts. Moreover, since in many cases extended-range skill is small, it is unlikely that one would choose a resolution in which skill was seriously compromised for reasons of efficiency.

In 1985 an experimental programme was started at the European Centre for Medium Range Weather Forecasts (ECMWF) to produce a set of extended (30-day) integrations at different times of year. Some preliminary results were shown in Hollingsworth et al. (1987). In the first year of this programme, identical forecasts were run each month at four different horizontal resolutions (T21, T42, T63, T106). This paper analyses results from this first year of parallel integrations. Section 2 describes the model and forecast data; section 3 is devoted to the analysis of the systematic errors, while section 4 discusses the objective skill scores of the extended-range integrations. Main results and conclusions are given in section 5.

The ECMWF NWP model is now used by a number of modelling groups in Europe, and elsewhere, as a general circulation model (GCM) for climate simulation purposes. An assessment of the dependence of climate bias on horizontal resolution is crucial for studies where computational efficiency for multi-year integrations is of paramount importance. The results in this paper give an indication of the minimum horizontal resolution necessary for climate simulation with this model.

Some aspects of the effect of horizontal resolution in the ECMWF model have been already discussed. For example, Jarraud et al. (1988) found that, for medium-range winter forecasts, an increase from T42 to T106 resolution had an overall beneficial impact. Cubasch (1981) studied this impact on a very limited sample of extended-range integrations. Boer and Lazare (1988) have studied the effects of horizontal resolution on climate simulations with the Canadian GCM in the range between T20 and T40. Manabe et al. (1978) have found that the quality of simulations tends to improve with increased spectral resolution, though they dealt with comparatively low-resolution models. Palmer et al. (1986) studied some effects of horizontal resolution in the Meteorological Office grid-point climate models.
2. The forecast data and the ECMWF model

The set of experiments considered in this paper consists of a monthly series of 30-day integration 'pairs', started from two consecutive initial conditions, separated by 24 hours, around the mid-month period; they are taken from the first year of the ECMWF extended-range programme from April 1985 to March 1986. Table 1 lists the initial dates of all the 24 forecasts. The choice of integrating from two consecutive days every month rather than from initial conditions separated by, say, a fortnight was motivated by the possibility of exploring the sensitivity of the integration evolution to relatively small details in the initial conditions. The difference between two such paired integrations can be viewed in terms of the evolution of the 24-hour forecast error field in the dynamical environment of a perfect-model predictability experiment.

| Table 1. List of initial dates for all experiments in the data-base. All integrations were started from 12 GMT analyses |
| --- | --- |
| 15 and 16 April | 1985 |
| 15 and 16 May | 1985 |
| 15 and 16 June | 1985 |
| 16 and 17 July | 1985 |
| 15 and 16 August | 1985 |
| 15 and 16 September | 1985 |
| 15 and 16 October | 1985 |
| 15 and 16 November | 1985 |
| 14 and 15 December | 1985 |
| 18 and 19 January | 1986 |
| 15 and 16 February | 1986 |
| 15 and 16 March | 1986 |

As mentioned above, all integrations were performed at four different model resolutions; T21, T42, T63 and T106 using the same version of the 16-level, operational ECMWF model, with the physical parametrization package as of March 1986. On the basis of an earlier study by Jarraud and Cubasch (1979) it was decided, at the time when experiments were made, that the \((\nabla^4)\) horizontal diffusion coefficients would be unchanged for T21, T42 and T63 models \((5 \times 10^{-5}\) for divergence and \(2 \times 10^{-5}\) for other variables), but they have been halved for T106. There is evidence that this choice of diffusion may not have been optimal for the T21 model, and that a more scale-selective diffusion (e.g. \((\nabla^8)\)) may lead to improved results at T21 (P. Valdes, personal communication). In Jarraud and Cubasch's study, resolutions lower than about T30 were not considered. The shallow convection and modified Kuo deep-convection parametrizations (Tiedtke et al. 1988) are included as well as vertical diffusion in the free atmosphere, but gravity-wave drag (Miller et al. 1989) and modified surface exchanges (Blondin and Böttger 1987) are not. (It should be pointed out, however, that the introduction of the gravity-wave drag and removal of vertical diffusion above the planetary boundary layer in later versions of ECMWF model had a major impact on the model mean; see P.) Analyzed sea surface temperatures were used as lower boundary condition and were held constant during an integration. The orography used in all the integrations is a 'one sigma' T106 envelope orography (Wallace et al. 1983). For integrations at resolution different to T106, the T106 orography was simply truncated at the appropriate model resolution. Furthermore, data assimilation was not run separately for all integrations at resolution lower than T106. Instead, the T106 resolution initial data were truncated to these lower resolutions.

Integrations for the second, third and fourth year of the experimental extended-range forecasting programme were performed with revised versions of the model, both in vertical resolution and parametrization schemes, which makes it possible to address
the problem of the impact of model changes in the context of interannual atmospheric variability (see P).

The forecast data is divided for all resolutions into two 'extended' seasons: the October 1985 to March 1986 (OM) period, and the April 1985 to September 1985 (AS) period in both northern and southern hemispheres. In the present paper, the average over the 6 pairs of integrations within an extended season is referred to as an 'ensemble mean' (in contrast with the meaning in B).

3. Dependence of systematic error on model horizontal resolution

In subsections (a) to (c) we study the influence of the model horizontal resolution on global-scale systematic error within the two extended seasons. In subsection (d) we study the influence of resolution on more regional diagnostics, specifically rainfall during the Indian and African monsoon season.

(a) Diagnosis of the zonally-averaged systematic error

Figure 1 shows 30-day-mean latitude–height cross-sections of the systematic error in zonally-averaged zonal wind for the ensemble means of model integrations at the four

![Figure 1. Zonally-averaged latitude–height cross-sections of 30-day mean zonal wind error at all four resolutions together with the verifying analysis: October 1985 to March 1986. Contour interval 2 m s⁻¹ for errors and 5 m s⁻¹ for the analysis. Negative errors and easterlies dashed.](image-url)
different resolutions plus, for comparison, analysed values (bottom) of the zonal-mean wind. For reasons of space, we show in this and other figures of zonal-mean cross-sections only values for the OM period.

Firstly, it can be seen that the dependence of systematic error on horizontal resolution in the stratosphere is different from what it is in the troposphere. In the troposphere, the T21 model behaves substantially differently from the models with other resolutions. In the southern hemisphere, in both seasons, the zonal-mean wind of the T21 model is severely weakened throughout the depth of the troposphere in middle latitudes. This error is not evident at other resolutions. By contrast, in the northern hemisphere, the T21 tropospheric errors are smaller than at other resolutions and of the opposite sign.

In the northern hemisphere extratropical troposphere in both seasons, zonal-mean wind errors for the T42, T63 and T106 models are quite similar to each other. There is a band of excessive westerlies extending down to the ground in middle latitudes, and a band of easterly errors at lower latitudes (indicating an erroneous poleward shift of the subtropical jet). In the southern hemisphere troposphere, the T42, T63 and T106 models again have broadly similar systematic errors, though during the OM period the T106 model errors appear to have the largest amplitude.

In the extratropical stratosphere, the influence of model resolution on zonal-mean wind errors is somewhat different from that in the troposphere. In the OM period, both T21 and T42 versions of the model show comparably excessive westerlies in the extratropics of both hemispheres. In the T63 and T106 models, these OM westerly errors are reduced, and similar to each other.

In the tropics there are erroneous easterlies with a maximum near the tropical tropopause during both seasons and at all resolutions. These extend down into the troposphere in the winter hemisphere. The tropical tropospheric easterly error is strongest in the northern hemisphere during the OM period, where it is weakest at T21, and largest at T63 and T106 resolutions. Apart from the equatorial region, the zonal-mean wind errors are barotropic in character throughout the troposphere.

Latitude–height cross-sections of systematic error in zonally-averaged temperature, are shown in Fig. 2. These are manifestly consistent, through the thermal-wind relations, with errors in zonal wind shown in Fig. 1. The excessive stratospheric westerlies in the T21 and T42 models can be inferred from strong stratospheric high-latitude cooling and low-latitude warming shown in Fig. 2. Similarly, the easterly error maximum in the southern hemispheric tropospheric winds at T21 in Fig. 1 is consistent with the erroneous high-latitude warming in the troposphere. In the tropical stratosphere, there is a clear warming at all resolutions. The tropical tropospheric easterly error in Fig. 1, however, is related to the subtropical maximum in temperature error at about 400 mb, particularly in the northern hemispheric OM period.

Figure 3(a–d) shows latitude–time diagrams of the OM period zonally-averaged temperature error in the troposphere (average from 1000–300 mb). The high-latitude tropospheric warming in the T21 model is clearly illustrated in Fig. 3(a). In the southern hemisphere, the evolution of the error is rapid, having almost reached saturation by day 10. (One has to exercise caution in interpreting the southern hemispheric polar-latitude tropospheric temperature errors, because of possible interpolation of the post-processed data below the ground from the model to pressure levels.) In the northern hemisphere, the error is smaller, and does not appear to have reached peak values until day 20. At T42 the high-latitude warming has largely disappeared, except directly over Antarctica. The errors at T63 and T106 are similar to each other and to the T42 error, except that the Antarctic error has been reduced further at T63 and T106, and the subtropical error in the northern hemisphere is a little larger at the higher resolutions (a point which is
confirmed later in the paper). Note that this subtropical error may not have reached saturation by day 30. Broadly these results confirm those above, that in the troposphere the T42, T63 and T106 models behave similarly, and quite differently from the T21 model.

In the stratosphere (Fig. 3(e–h), averaged over 150–30 mb), errors are much larger. At T21 in high latitudes there is a large and rapid cooling in both hemispheres (completely the opposite of the high-latitude behaviour in the troposphere). In the tropics and subtropics there is a strong warming. The pattern is very similar at T42, though the intensity of the cooling in the northern hemisphere is somewhat smaller. At T63, the high-latitude stratospheric cooling is reduced dramatically, though the tropical warming remains largely unchanged. The T106 model stratosphere is broadly similar to the T63 model. Again, these results confirm the discussion of Fig. 2 that, as regards their behaviour in polar latitudes in the stratosphere, the T21 and T42 models have little in common with the T63 and T106 models.

Forcing of the zonal-mean flow by the stationary and transient eddies is an essential feature of the observed general circulation. Systematic error in the zonal-mean flow necessarily implies systematic error in the zonally varying flow. Zonal cross-sections of the systematic errors in the total meridional eddy momentum and heat fluxes (stationary and transient waves) associated with such rectification are shown below.

The systematic error in tropospheric momentum flux for the four models is shown in Fig. 4. Compared with analysed values (bottom), the T21 model significantly under-
Figure 3. Time evolution of zonally-averaged temperature errors at all four resolutions in the season October 1985 to March 1986 averaged for the slab 1000–300 mb (left) and 150–30 mb (right). Contour interval 1 K, negative errors dashed.
estimates the extratropical convergence of poleward momentum flux in both hemispheres. For other resolutions, the pattern of systematic error is more complex, with two separate maxima in the northern hemisphere. In the southern hemisphere there is also a tendency to underestimate the momentum flux convergence at higher resolutions during the OM period (but to overestimate momentum flux convergence during the AS period, not shown).

In studying momentum flux errors, we have separated the contributions associated with zonal wavenumbers 1–3 (long waves), and zonal wavenumbers 4–9 (synoptic-scale waves). Figure 5 illustrates this error decomposition for the T106 resolution and verifying analysis during the OM period. In the northern hemisphere, the analysed extratropical momentum flux convergence (bottom panels in Fig. 5) is dominated by the contribution from the long waves; whilst in the southern hemisphere it is dominated by the contribution from the synoptic-scale waves. At T106 (and also T63 and T42, but not at T21), it can be seen that in the northern hemisphere there is a clear overestimation of synoptic-scale flux convergence in mid-latitudes, and an underestimation of long-wave flux convergence at higher latitudes, indicating some degree of compensation between errors in long-wave and synoptic-scale wave momentum flux. An interpretation of these results is given in the next section.

Errors in the zonally averaged cross-section of horizontal heat flux are generally small in the troposphere, but increase in the stratosphere, where they are dominated by the long-wave contribution. Figures 6 and 7 show cross-sections of the long-wave sys-
Figure 5. Zonally-averaged latitude–height cross-sections of 30-day mean errors for T106 model meridional eddy momentum flux (top) and verifying analysis field (bottom) in the season October 1985 to March 1986. Left: wavenumber 1–3; right: wavenumber 4–9. Contour interval 2 m s$^{-1}$ for errors and 5 m s$^{-1}$ for the analysis. Negative errors and northerly fluxes dashed.

Figure 6. As Fig. 1 but for wavenumber 1–3 zonally-averaged eddy heat flux in the stratosphere (slab between 150 and 25 mb) and the season October 1985 to March 1986. Contour interval 2 K m s$^{-1}$ and 5 K m s$^{-1}$ for errors and analysis respectively.
Figure 7. As Fig. 6 but for momentum flux. Contour interval 4 m2s$^{-2}$ and 5 m2s$^{-2}$ for errors and analysis respectively.

tematic error of horizontal heat and momentum flux (respectively) in the stratosphere. It can be seen that in the northern hemisphere between T21 and T42, there is a decrease in heat-flux error. Between T42 and the higher resolutions, the dependence of heat-flux error on resolution is less marked than might be suggested by the resolution dependence of stratospheric zonal-mean temperature error (see Fig. 2). At all latitudes, and in all resolutions, the error corresponds to an underestimation of the poleward heat flux when compared with analysed values.

The fact that stratospheric heat-flux errors do not decrease strongly between T42 and T63 may, at first sight, appear paradoxical, given the substantial decrease in zonal-mean temperature error between these resolutions (see Fig. 2). However, as diagnostic studies in the real stratosphere have shown (O'Neill and Taylor 1979; Palmer 1981), fluctuations in zonal-mean temperature are often more strongly correlated with long-wave momentum fluxes than with long-wave heat fluxes. This can be readily understood in terms of transformed Eulerian mean dynamics (e.g. Palmer 1981; see also below).

This also appears to be the case for the model simulations. From Fig. 7, between 60–70°N there is a region of analysed equatorward momentum flux between 100 and 150 mb. It can be seen that these equatorward fluxes are considerably weaker at T21, with this error reducing by about a factor of 2 between T21 and T63. The dynamical significance of this is addressed in the next section.

In addition, note that near the top of the model, there is an overestimation of poleward momentum flux near 40°N at all horizontal resolutions. We argue below that
this is indicative of the influence of the reflecting upper-boundary condition.

Despite the tendency to overestimate momentum fluxes at higher resolution, the eddy kinetic energy of the model is (except over Antarctica at T21 and T42) underestimated at all resolutions in both hemispheres at both times of year (Fig. 8). It is seen that the errors peak near the tropopause. For this particular diagnostic the dependence of error on horizontal resolution is not uniform. For example, in middle latitudes in the northern hemisphere, where errors are dominated by transient eddies, there is a decrease in error with increasing resolution. On the other hand, near the subtropical jet, errors are rather independent of resolution. It was shown in P, that these errors are substantially reduced by removing free atmosphere diffusion. The large positive errors over Antarctica at T21 are thought to be associated with an erroneous stationary anticyclone over Antarctica (see Fig. 10). There is some evidence that this particular error is sensitive to the treatment of the pressure gradient terms in the vicinity of the Antarctic plateau (A. J. Simmons, personal communication).

For reasons of space we shall not show diagrams for the AS period corresponding to Figs. 1 to 8. However, in the following paragraphs we briefly discuss the impact of resolution increase on systematic error in the northern hemisphere summer.

In zonally-averaged zonal wind, one finds, as in the OM period, a distinct difference in the error amplitude between the stratosphere and troposphere. However, errors in the stratosphere are now less dependent on model resolution. In the southern hemisphere the T21 model substantially underestimates tropospheric zonal flow, and in the northern hemisphere westerlies are also weaker than observed. The latter feature is in contrast

KE Days 1-30

OM season

Figure 8. As Fig. 1 but for eddy kinetic energy, Contour interval 21 m$^{-2}$Pa$^{-1}$; negative error dashed.
with the error pattern found at higher resolutions, in which the northern hemisphere mid-latitude westerlies are strengthened. Tropical easterly errors are marginally weaker at T21 than at higher resolutions.

The zonally-averaged tropospheric temperature error is similar in all models and characterized by a weak warming in the middle and upper troposphere and a weak cooling below about 700 mb. The 30-day mean error in the tropical stratosphere is about 2 K larger in the T21 and T42 models. A relatively strong stratospheric cooling in the northern hemisphere high latitudes shows little sensitivity to resolution change. On the other hand, time-evolution of stratospheric temperature error in the southern hemisphere high latitudes (cf. Fig. 3) shows an abrupt change of sign: a relatively strong cooling at T21 is much reduced in the T42 model and becomes a warming in the T63 and T106 models.

The momentum flux convergence in the southern hemisphere mid-latitudes during the AS period (southern hemisphere winter) is almost halved in the T21 model when compared with the verifying analysis. On the contrary, at higher resolutions, there is an overestimation of momentum flux; this tendency is much stronger at T63 and T106 than at T42. Thus, the models behave consistently in wintertime in both hemispheres. As in the OM period, there is a loss of eddy kinetic energy over most of the globe. The dependence on resolution is now less clear, though, on average, high-resolution models exhibit somewhat reduced errors.

(b) Discussion of the zonally-averaged systematic error diagnostics

A possible interpretation of the extratropical systematic wind and temperature errors of the T21 version of the ECMWF model has already been given in Miller et al. (1989). The overall weakness of momentum flux convergence in middle latitudes in the southern hemisphere is consistent with the weak zonal-mean flow. However, as argued in Miller et al., the fact that systematic errors in the zonal wind at T21 are relatively small in the northern hemisphere suggests that the weak middle latitude momentum flux convergence must be balanced by an erroneously weak momentum coupling to the land surface. It is hypothesized that this weak coupling is due to inadequate representation of subgrid-scale orography in the T21 model. There is evidence that the small values of momentum flux convergence in both hemispheres during both seasons is associated with dissipative effects specifically associated with running the model at that resolution (see above).

At resolutions higher than T21, the momentum fluxes increase. Consistent with this, the simulated zonal wind in the southern hemisphere becomes more realistic, whilst the northern hemisphere zonal wind during the OM period becomes quite unrealistic. It is reasonable to suppose that the erroneously weak momentum coupling to land surface persists at the higher resolutions.

One straightforward way of gaining some insight into the role of orography on the general circulation is to study the difference between two sets of experiments, with and without orography (e.g. Held 1983). In the present context, repetition of the extended-range forecasts without orography would be impractical. A simple alternative would be to treat the analysed southern hemisphere AS flow as a winter no mountain flow, and the northern hemisphere OM flow as a winter with mountain flow. Given the suggestion that the parametrization of subgrid-scale orography is deficient, it might be hypothesized that in winter the middle-latitude zonally-averaged systematic error might resemble qualitatively the difference between the observed southern hemisphere AS and northern hemisphere OM zonal-mean diagnostics (no mountain minus with mountain flow).

Figure 9 shows just such observed difference fields constructed from the verifying analyses shown in Figs. 1, 2 and 4-7 above. (For the sake of argument we ignore the
Figure 9. Difference between 30-day mean analysed zonally-averaged southern hemisphere April–September 1985 diagnostics and analysed zonally-averaged northern hemisphere October 1985–March 1986 diagnostics (wintertime no mountain minus with mountain flow): (a) zonal wind; (b) temperature; (c) contribution to meridional eddy momentum flux from zonal wavenumbers 1–3; (d) contribution to meridional eddy momentum flux from zonal wavenumbers 4–9; (e) contribution to stratospheric meridional eddy heat flux from zonal wavenumbers 1–3.
‘amplitude’ differences and concentrate on discussing the pattern of these fields only.) To a first approximation, the differences shown in Fig. 9 resemble the model’s systematic errors at (mainly) higher resolutions. It can be seen that these differences broadly support the hypothesis as stated above. The pattern of the extratropical zonal-mean zonal-wind difference (Fig. 9(a)) corresponds well with the systematic error of the T42, T63 and T106 models, with a band of westerly differences increasing with height, particularly in the stratosphere. It is interesting to note that there are no easterly differences in the tropics, suggesting that the model’s easterly errors are not mainly related to orography. Observed temperature difference fields are shown in Fig. 9(b). Consistent with the increase in westerlies with height, there is a strong cooling during the AS period in the high latitudes of the southern hemisphere, compared with the OM periods in the high latitudes of the northern hemisphere. Again, this appears to be broadly qualitatively consistent with the OM zonal-mean temperature errors in Fig. 2 (particularly at T21 and T42).

Eddy momentum flux differences show an even more remarkable similarity to the model’s systematic errors. (In order to form these ‘difference’ fields it was, of course, necessary to multiply the southern hemispheric fluxes by −1 so that a southern hemispheric poleward flux is transformed into a northern hemispheric poleward flux.) In Fig. 9(c, d) we show the momentum flux differences split into the two wave bands: zonal waves 1–3, and zonal waves 4–9, respectively. It can be seen that in high latitudes, the long-wave momentum flux difference is positive, and in lower latitudes the difference is negative (reducing the long-wave momentum flux convergence in the no mountain relative to the with mountain flow). Exactly the opposite is the case for the synoptic-scale waves; the poleward momentum flux and its mid-latitude convergence are enhanced relative to the with mountain flow.

These results suggest that there is a compensation between the momentum fluxes of the long and synoptic-scale waves between a no mountain and a with mountain atmosphere, and this is exactly what was found for the momentum-flux systematic errors in the higher-resolution models during the OM period (Fig. 5). The reason for such compensation is probably straightforward. That is to say, northern hemispheric momentum-flux convergence is dominated by the long Rossby waves forced by large-scale topography and land–sea temperature contrasts. In the southern hemisphere winter, with no strongly meandering jets, the zonally-averaged meridional temperature gradients are stronger in middle latitudes, and baroclinic wave activity is more pronounced.

Finally, in Fig. 9(e) we show the observed long-wave heat-flux differences in the stratosphere. Once more, consistent with the model systematic error (Fig. 6), there is a marked reduction in flux in high latitudes compared with OM values in the northern hemisphere. It would appear therefore that the increase in the simulated long-wave heat fluxes in the lower stratosphere/upper troposphere with increasing horizontal resolution (or reduction of the model systematic error) is associated with the better-resolved orography at higher resolutions. As Tibaldi (1986) has shown, enhancement of long-wave activity with envelope orography is associated primarily with the increments to the short-wave component of the orographic spectrum rather than with the long-wave component. In a similar way, we can expect the improvement in resolution of short-wave orographic components with increased horizontal resolution to enhance the vertical propagation of long-wave activity into the stratosphere.

Further interpretation of stratospheric errors is possible by combining the heat and momentum flux errors in terms of errors in the Eliassen–Palm (EP) flux, $F = (- [u^*v^*], [v^*T^*])$, where $[u^*v^*]$ and $[v^*T^*]$ represent zonally-averaged eddy momentum and heat fluxes respectively, $c = f/N^2$, where f denotes the Coriolis parameter
and \(N \) is the Brunt–Väisälä frequency (see, for example, Edmon et al. 1981).

From the analysed fields in Figs. 6 and 7, and the above discussion, it can be seen that in the stratosphere in the northern hemisphere during the OM period the EP flux vectors are directed upward and poleward between 100–150 mb and between 60–70° N. In the model simulations, the magnitude of this upward and poleward flux is reduced, with the most severe errors at T21. The direction of the EP flux can under suitable (slowly varying) conditions be interpreted in terms of the direction of propagation of Rossby wave activity (Palmer 1982). Since convergence of the flux gives a measure of the local wave/mean-flow interaction (Edmon et al. 1981), it would appear that the stratospheric high-latitude zonal-mean temperature error in Fig. 2 is directly related to the direction of Rossby wave activity into high latitudes. At T21 and T42, the wave activity is directed insufficiently towards polar latitudes, and the model mean state in high latitudes has relaxed towards radiative equilibrium and hence towards excessively cold temperatures.

A possible dynamic reason for insufficient wave, mean-flow interaction in polar latitudes is that the simulated mean flow at T21 and T42 cannot sustain sufficiently large meridional gradients in potential vorticity to focus wave activity poleward. The creation of such gradients is believed to be associated with irreversible Rossby wave-breaking at the edge of the polar vortex (McIntyre and Palmer 1984). Indeed, as Juckes and McIntyre (1987) have shown with a single-layer T159 model, the structure of potential-vorticity filaments stripped away from the polar vortex during wave-breaking episodes requires considerable horizontal resolution to model accurately. This is also consistent with the GCM results of Mahlman and Umscheid (1987), who found that realistic simulation of middle atmosphere (stratosphere) circulations could not be achieved without increasing horizontal resolution to \(1 \times 1 \) degree (although these authors suggest additionally that an explicit gravity-wave dissipation is an important aspect of their simulations).

As noted in the previous section, the errors in heat and momentum fluxes near the very top of the model were qualitatively similar at all resolutions. In terms of the EP flux, these errors correspond to the suppression of vertical propagation of Rossby-wave activity and an erroneous enhancement of their equatorward propagation. These errors are not captured by the no mountain minus with mountain analysis difference fields; that is to say they are not directly associated with errors due to representation of orography. It seems reasonable to speculate therefore that this error is directly associated with the reflective upper-boundary condition which channels Rossby-wave activity further equatorward near the top of the model, leading to erroneous wave-phase characteristics.

It is likely that errors in eddy kinetic energy are not associated directly with inadequate orographic forcing, but with excessive internal damping processes acting across the tropopause in particular. As shown in P, substantial reduction in this error occurred when vertical diffusion in the model free atmosphere was removed.

(c) The geographical distribution of large-scale systematic error

Figure 10 shows ensemble-average 30-day mean 500 mb height error maps for forecasts from the OM period in both northern and southern hemispheres for all four model resolutions (T21, T42, T63 and T106), together with the verifying analysis (bottom). As suggested by the zonal-mean cross-sections, the T21 model shows a better simulation of the northern hemispheric winter climate than the other (higher) resolutions but, conversely, heavily damps the strength of the westerlies in the southern hemisphere. The T42, and particularly T63 and T106 models behave very similarly to each other. Comparison of the higher-resolution error in the northern hemispheric fields with similar maps characteristic of earlier versions of the ECMWF operational model (e.g. Wallace
OM Days 1-30

Figure 10. 30-day mean 500mb geopotential height errors for the four resolutions and verifying analysis (bottom) in the season October 1985–March 1986. Left: northern hemisphere; right: southern hemisphere. Contour interval 5 dam for errors and 8 dam for analysis; negative errors dashed.
et al. 1983) demonstrates that typical day-10 error magnitudes of the 1981 operational model are not attained until around days 20 to 30. The general character and structure of the errors, however, has changed less. We still find a large north-south negative-positive dipole over the central Pacific and a similar, weaker one, over the eastern Atlantic and western Europe, all corresponding to weakening of the quasi-stationary planetary waves and strengthening of the westerly jet in mid-latitudes.

In the southern hemisphere, the T21 climate suffers from particularly large deficiencies, as was mentioned above. The pole-to-equator geopotential height gradient is severely underestimated, together with the strength of the zonal flow. At higher resolution, the principal mid-latitude error is a slight underestimation of the zonal-mean flow, and the wavenumber 3 stationary-wave pattern.

We now focus our attention on the tropical region. Figures 11 and 12 show the 30-day mean 200 mb velocity-potential and streamfunction errors, respectively (for the AS period only). It can be seen that the 200 mb divergent flow is underestimated at all resolutions. In particular, the maximum of upper divergence over the west Pacific is severely weakened, the magnitude of the error being smallest at T21 but larger and monotonically increasing at T42, T63 and T106. The error in upper-level convergence at T21 is largely concentrated over east Africa, east of the region of maximum analysed convergence. At higher resolutions, particularly at T63 and T106, this error is spread more uniformly across Africa and the Atlantic.

Maps of 200 mb streamfunction errors are shown in Fig. 12: these are consistent with the upper tropospheric tropical zonal-mean easterly wind errors discussed in subsection 3 (a). At all resolutions, significant tropical easterly errors extend across the Atlantic and Pacific; only across the Indian ocean are they small or westerly. The magnitude of the errors increases with resolution, being smallest at T21, and largest at T63 and T106.

The streamfunction and velocity-potential error maps are qualitatively consistent assuming a linear Sverdrup–balance model of the tropical atmosphere (Gill 1980). In particular, if a pattern of forcing is specified with a horizontal structure given by the error maps in Fig. 11, the Gill model predicts anomalous easterlies to the east of the upper anomalous (in our case erroneous) convergence (west Pacific) and west of the anomalous upper divergence (Africa/Atlantic), and anomalous westerlies elsewhere. In Gill’s model, the strength of the anomalous winds is linearly related to the strength of the anomalous forcing. Similarly, we note that the error in the non-divergent wind increases (with resolution) as the error in the divergence increases over Indonesia.

It is interesting to speculate why the tropical systematic error should get monotonically worse with increasing resolution. One possible explanation is that the physical parametrizations, notably the (Kuo) convection scheme used in the models considered, only give realistic estimates of diabatic heating when driven by large-scale moisture flux convergences. Related to this, in the high-resolution models, the relatively small-scale (and high-frequency) moisture flux convergences may be quite ‘noisy’ and unrealistic (B. J. Hoskins, personal communication).

Errors in the global 850 mb wind fields (not shown) are broadly the opposite of those at 200 mb, with erroneous easterlies over Indonesia, and erroneous westerlies elsewhere, corresponding to a weakening of the trade winds. These erroneous easterlies are notably stronger than the erroneous westerlies, and the zonal-mean wind errors at 850 mb are consequently relatively small.

As an example of 850 mb flow, relevant to the discussion in subsection (d), Fig. 13 shows the 30-day mean 850 mb monsoon flow at the four horizontal resolutions from 17 July 1985. Compared with the analysed values (Fig. 13, bottom), the strength of the
Figure 11. 30-day mean 200 mb velocity potential errors for the four model resolutions and verifying analysis (bottom) in the season April–September 1985. Contour interval 2×10^6 m2 s$^{-1}$; negative errors and analysed divergence dashed.
Figure 12. 30-day mean 200 mb streamfunction errors for the four model resolutions and verifying analysis (bottom) in the season April-September 1985. Contour interval 5×10^6 m3s$^{-1}$ for errors and 10×10^6 m3s$^{-1}$ for the analysis.
Figure 13. 30-day mean wind field at 850 mb for 17 July 1985 for all four model resolutions and verifying analysis (bottom). Isotachs every 5 m s\(^{-1}\), and shaded above 10 m s\(^{-1}\).
easterlies over the south Indian Ocean and the low-level jet off the Somali peninsula are all underestimated. Notice that, as with the global 200 mb streamfunction and velocity-potential fields, systematic error increases with increasing resolution.

(d) Influence of horizontal resolution on simulation of monsoon rainfall

In P we studied the extended-range prediction of tropical precipitation during the summer monsoon. In this section we show, as an example of the impact of resolution on regional simulation, monthly-mean precipitation over the Indian and African regions for forecasts initialized on 17 July 1985. These are shown in Figs. 14 and 15 together with the corresponding orography over the regions. Also shown is the monthly-mean value of 24-hour accumulated rain from the operational ECMWF day-1 forecast integrations during the 30-day period of the extended-range integration; we use this latter field with caution to ‘verify’ the 30-day forecast fields.

The T21 model is unable to simulate the rain shadow effect of the western Ghats, which is a well-observed feature of the Indian monsoon, and is clearly shown in the ‘verification’ field. At T21 there is a single rainfall maximum positioned over the Indian subcontinent with a minimum in rainfall over the Bay of Bengal. A major difference occurs at T42 with rainfall maxima positioned over the Bay of Bengal and to the northeast of the western Ghats. Notice the strong gradients in rain amounts to the north of the maximum near 25°N, approximately correctly simulated. If the precipitation field from the T42 simulation is truncated itself at T21 (not shown), the principal features remain, thus confirming the benefit of using the higher resolutions for rainfall prediction. The simulations at T63 and T106 clearly show more small-scale features than the T42 resolution: for example, the values of maxima are increased and the rain-shadow effect near the southern tip of India is strongly enhanced at T106. However, the rainfall features on the scale of the subcontinent are not significantly changed at higher resolution. The erroneous northward displacement of the rainfall maxima over the west coast of India is consistent with the error in low-level flow shown in Fig. 13.

The sensitivity to resolution of the positioning of rainfall maxima, seen in Fig. 14, is not apparent over Africa (Fig. 15). Apart from some sharpening of gradients at higher resolution, the major difference between T21 and T42 prediction is in the simulation of the west African coastal maximum. Note that the increase of this maximum with resolution occurs as an orographic feature ‘moves’ into the ITCZ region! The strength of this rainfall maximum, and the maximum over the Ethiopian highlands, increases fairly monotonically with resolution through to T106.

The results from this section and the previous one may appear somewhat contradictory. On the one hand, large-scale divergent flow is best simulated in the low-resolution model, whilst on the other hand, topographically-related regional rainfall is best simulated in the higher-resolution models. How to overcome this disparity of results is not clear, but may require further basic investigations into the mechanisms that cause mesoscale organization of convective activity to project onto slow modes of the tropical atmosphere.

4. Dependence of objective skill scores on model horizontal resolution

It might be supposed that in the medium and extended range, the skill of an NWP model is inversely correlated with the magnitude of its systematic error. As was noted above, the magnitude of the tropospheric northern hemisphere height and wind errors for the OM period were smallest for the lowest-resolution T21 model. This raises the question as to whether the T21 model has the best forecast skill of the four during the northern hemisphere OM period. In the following, skill scores (anomaly correlation coefficient, ACC, and r.m.s. error) are defined over the area enclosed between 22-50 and
Figure 14. Left: 30-day mean precipitation over the Indian region for all four model resolutions from integrations initialized on 17 July 1985 and ‘verification’ derived from the operational 24-hour accumulated rainfall over the period which covers 30-day integration (bottom left). Right: orography over the same region. Contour interval 1, 2, 5, 10, 20 mm d$^{-1}$ for the rainfall and 250 m for the orography.
86.25 degrees, and are computed for time-mean 500 mb height and 850 mb temperature in the northern and southern hemispheres.

Figure 16 shows the time series of the 500 mb ACC height error throughout the year of the experiments for both the mean of days 1–10 and days 11–20. For each month the curves are drawn through the mean of the two 30-day forecasts initiated 24 hours apart.

In the northern hemisphere, it can be seen that for days 1–10, T21 has consistently the poorest forecast skill. The T42 is the next poorest, though on occasions (e.g. October 1985) it can ‘outperform’ the higher-resolution models. The relative skill of T63 and T106 is hard to distinguish visually.

For days 11–20, the T21 model shows a behaviour somewhat different from the other models, and the ACC is lower than in the other models in almost half of the cases. In this time range there is one case (January 1986, northern hemisphere) when both of the T21 forecasts are much superior to all the others. This case is discussed at length in B, though in a different context. During the second pentad of the forecast period, an intense block developed over the Euro/Atlantic region, and geopotential height anomalies were generally positive over high latitudes in the northern hemisphere. During the first 10 days, the T21 forecast was the poorest of the set (Fig. 16); however, subsequent to this, all of the forecasts exhibited their characteristic climate drift, with the T42, T63 and T106 forecasting anomalously strong hemispheric westerlies, and the T21 model forecasting weak anomalous easterlies in mid-latitudes. Because of its relative failure in the early period, the relative success of the T21 model in days 11–20 must be viewed as a chance occurrence.

On the other hand, during February 1986, the T21 model was clearly the poorest at days 11–20. However, in this case the success of the higher-resolution models cannot be ranked as a chance occurrence, again because they were very skilful in the first ten days. These higher-resolution integrations predicted the correct evolution of anomaly fields during a period characterized by significant blocking anomalies (cf. B).

Similar conclusions can be made for the skill scores of the southern hemisphere. From Fig. 16, it can be seen that the T21 model is poorest for days 1–10 of the forecast period, with some indication that T42 is marginally poorer than those with the higher resolutions. For days 11–20, the three high-resolution models do not show obvious systematic differences. As in the northern hemisphere, there is an interesting period during February 1986 when all models show comparable high skill. The 500 mb height-anomaly maps (not shown) for this forecast period indicate anomalous positive geopotential height in high latitudes in the southern hemisphere. Unlike the January 1986 northern hemispheric case, these anomalies were already well established during the first ten days. Again the T21 model developed its characteristic systematic error which in this instance was ‘skilful’, whilst the higher-resolution models were able to maintain the anomalous flow during the 30-day period. Indeed, these two cases (January 1986, northern hemisphere and February 1986, southern hemisphere) typify and confirm results of earlier medium-range forecast studies (Grönnaas 1982; Palmer and Tibaldi 1988; Tibaldi and Molteni 1990) that the operational model is poorest when blocking develops more than a few days into the forecast period, but it is usually skilful when blocking is already established.

Figure 17 shows time series of the 30-day mean 850 mb temperatures for the northern and southern hemispheres. It is interesting to note the apparently high degree of skill in forecasting this variable, particularly in the southern hemisphere. This level of skill is maintained throughout the forecast range (not shown). This would appear to indicate the direct influence of sea surface temperature (whose autocorrelation time exceeds one month) on the model’s boundary-layer thermal structure (Molteni et al. 1988, and B).
Figure 16. Northern hemisphere 1–10 day mean (top) and 11–20 day mean (bottom) anomaly correlation coefficient of 500 mb height field for forecasts throughout the year from April 1985 to March 1986. Left: northern hemisphere; right: southern hemisphere. Solid line T21; dashed line T42; dot-dashed line T63; dotted line T106.
Figure 17. As Fig. 16 but for 30-day mean 850 mb temperature. Top: northern hemisphere; bottom: southern hemisphere.
In contrast to the 500 mb height field ACC, the systematic error of the T21 model in the southern hemisphere has a fairly uniformly deleterious effect on the 850 mb temperature skill scores.

In Fig. 18, we show 10-day and 30-day mean r.m.s. and ACC scores for the OM period in the northern hemisphere for the four resolutions. It is interesting to note that the T21 model is poorer than the others up to days 11–20 at least in terms of ACC. This suggests that apparent forecast skill at this range with the higher-resolution models is not purely the result of chance sampling. We believe that this gives some support to the conclusions of P and B, that with operational NWP models there is evidence of forecast skill in the range between days 11–20.

In order to assess more quantitatively the extent to which differences in skill between model resolutions are statistically significant, a Student t-statistic has been calculated to determine whether the skill/spread at a given resolution is significantly higher than the skill at the next higher resolution. There is, however, considerable ambiguity in the calculation and interpretation of t, not least associated with uncertainty in the number of degrees of freedom chosen. However, for comparison purposes, we quote the standard statistical test that with 22 degrees of freedom (12 pairs of forecasts), a one-sided t-test would be accepted with 90% confidence if $t > 1.32$. The number of degrees of freedom is based on the assumption that twin forecasts (integrated from initial data separated by 24 hours) are not independent. Whilst this certainly holds for days 1–10, it is probably less so for days 11–20.

On this basis, the t-value associated with the difference in skill between the (z transform of) ACC between the T63 resolution and T106 resolution is 0.03. Hence, whilst Fig. 18 indicates that T63 is more skilful than T106 in the extended range, it is likely that this is due to sampling. (Note also that for daily scores within the first ten days, Simmons et al. (1989), have shown with a much larger sample that the difference in skill between the T63 and T106 models is measurable, and in favour of the T106 model.) On the other hand, whilst sampling cannot be ruled out, it is less likely that T21 and T106 have comparable ACC skill in the extended range between days 11–20. The t-value associated with the difference in skill between the T21 resolution and the T106 resolution at this time range is 1.45. A less conservative assumption that all the forecasts within the given sample are independent at days 11–20 yields that the ACC of the T63 (as well as of the T106) model is significantly better than that of the T21 (the t-value is 1.55). However, this is not so in the case of the r.m.s. error. Also in Fig. 18, there is an apparent 'return of skill' in the T21 model towards the end of the forecast period. This may be indicative of the sampling problem associated with the relatively small set of forecasts available to us.

In Fig. 19 we show the 10-day and 30-day mean r.m.s. spread of hemispheric 500 mb height between the forecast twins for the OM period. This gives information about internal error growth at each model resolution. It can be seen that, on average over the four models, the asymptotic 10-day mean r.m.s. spread between adjacent forecasts is about 80 m for the OM season. For a model with realistic low-frequency variability, the asymptotic spread should approach the asymptotic persistence error, i.e. the difference between two randomly chosen fields. However, it can be seen that the asymptotic model spread is about 70% of persistence during the OM period (and about 50% of persistence during the AS period). This indicates a significant underestimation of atmospheric low-frequency variability at all resolutions (consistent with the loss of eddy kinetic energy discussed above and also in P).

One important caveat should be made concerning these results. It is possible that the potential of the higher-resolution models is not being fully realized in the extended
Figure 18. Northern hemisphere 10- and 30-day mean 500 mb height r.m.s. error (top) and ACC (bottom) during the OM period. Solid line T21; dashed line T42; dot-dashed line T63; dotted line T106.
range, owing to the increase of tropical systematic error with horizontal resolution. In a companion paper, Ferranti et al. (1990) showed that extended-range extratropical skill can be improved considerably with an accurate simulation of the tropical flow. In view of our earlier comments, and the results of Ferranti et al., it is possible that extratropical skill of the T63 and T106 models in the range of days 11–20 could be enhanced if some of the physical parametrization schemes were driven by spatially truncated fields.

5. CONCLUSIONS

In recent years, the difference between numerical weather prediction (NWP) models and general circulation models has become less distinct, just as the boundaries between extended-range prediction and climate forecasting are themselves ill-defined. Thus, the present study of the influence of horizontal resolution on the extended-range systematic error and skill of the ECMWF spectral NWP model is of relevance both to weather prediction and to climate-simulation studies. We have studied the behaviour of a set of 30-day forecasts during one annual cycle, at four resolutions: T21, T42, T63, T106. The low-resolution model, whilst not a serious candidate for NWP, is used in many centres for multi-year climate integrations.

Zonal-mean error diagnostics from these integrations clearly indicate that in the extratropical troposphere, the climate drift of the T21 model is qualitatively different from that of the higher-resolution models. The impact of horizontal resolution between T21 and T42 is broadly in agreement with Boer and Lazare (1988). The T63 and T106 models have very similar mean errors, and the T42 model errors closely resemble these. In the extratropical stratosphere, however, the T42 model systematic errors are comparable to those of the T21 model, whilst again the T63 and T106 model climates appear very similar to one another. These results indicate that the T42 model is in some
sense transitional between the T21 low-resolution and T63, T106 high-resolution models. However, for tropospheric simulations the T42 model could be viewed as having systematic errors quite representative of higher-resolution models.

The behaviour of the T42 model as a 'low'-resolution model in the stratosphere is rather interesting, and suggests that the dynamical warming of the stratosphere through irreversible Rossby wave breaking cannot be adequately simulated at T42 resolution, but can at higher resolutions. This appears to be consistent with the emerging view of the stratosphere as a region of the atmosphere with abundant fine-scale structure. Results from the T42 model in this study also raise important questions concerning the coupling between the stratosphere and the troposphere. Specifically, the fact that the T42 model can mimic the T21 model in the stratosphere, yet resemble the T106 model in the troposphere, suggests that systematic errors in the two regions of the atmosphere can vary quite independently.

Differences between zonal-mean diagnostics of the observed winter flow in the northern and southern hemispheres are well correlated with the winter zonal-mean systematic errors of the northern hemisphere higher-resolution models, as shown by the excessive westerlies throughout the depth of the atmosphere, the overestimation of the transient meridional eddy momentum flux and the underestimation of the meridional long-wave heat flux. It is suggested that this indicates that topographic forcing in the model was underestimated, and it is noted that the version of the ECMWF model used in this study had no parametrization of orographic gravity-wave drag (although it did have an envelope orography).

On the other hand, other systematic errors have mainly weak dependence on horizontal resolution, and have no clear relation with orography. These include an underestimation of subtropical eddy kinetic energy and erroneous momentum and heat fluxes near the very top of the model. It is shown in P that the error in eddy kinetic energy is associated with excessive dissipation near the tropopause level. In this study, it was argued that mid-latitude errors in the momentum and heat fluxes near the top of the model were most likely associated with the model's reflective boundary condition.

Some aspects of the large-scale tropical flow appear to deteriorate with increasing horizontal resolution. For example, upper tropospheric divergence over Indonesia is underestimated at all resolutions, and is particularly poor at T106. The low-level monsoon flow is most accurately simulated at T21 resolution, and is generally weak at T106. It was suggested that, for example, the Kuo parametrization scheme may only give an accurate estimation of large-scale diabatic heating when driven by large-scale flow fields.

The regional simulation of rainfall during the Indian and African monsoons was also studied. Consistent with results above, significant changes were apparent between the T21 and T42 resolution models. However, apart from matters concerning details in the rainfall field, like strength of maxima and sharpness of gradients, the T42 model behaves qualitatively similarly to the others. The ability to resolve local orographic features is important in accurately simulating local precipitation maxima or minima.

On the other hand, bearing in mind the deterioration of some aspects of the large-scale tropical flow at high horizontal resolution, and results from Ferranti et al. (1990) showing significant impact of tropical-forecast errors on extended-range extratropical forecast skills, it is possible that the potential of the higher-resolution models for extended-range forecasting may be underestimated in this study.

The evidence presented in this paper suggests that, bearing in mind the computational cost, the T106 resolution may be unnecessarily fine for both extended-range forecasting, and climate studies. However, at present, the computational burden of T63 resolution may also be excessive for many climate studies. It would appear from our analysis, that
with some caveats (particularly in the stratosphere) the behaviour of the T42 model is comparable with the high-resolution models, and is a satisfactory compromise for many purposes, bearing in mind the impact of resolution on tropical systematic error. However, it would appear that the extreme sensitivity of the ECMWF model climate drift to resolution in the range between T21 and T42, and the apparent inability of the T21 model to simulate the correct internal nonlinear dynamics of the extratropics, makes integration at resolution lower than T42 questionable.

REFERENCES

