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A B S T R A C T   

A flood is one of the most hazardous natural disasters, and it commonly causes fatalities and socioeconomic 
damages. The advances of modeling techniques and observation data in flood prediction have found success in 
field operations. This paper presents a comprehensive flood prediction of Hurricane Harvey in 1-hour lead-time 
that is not limited to 1D streamflow forecast but also 2D flood extent and 3D inundation depth. It uses high- 
resolution quantitative precipitation forecasts (QPFs, from operational Rapid Refresh-RAP, and High Resolu
tion Rapid Refresh-HRRR models) and deep learning nowcasts (AI nowcasts). The results show that the QPFs 
have a well-known displacement issue and the AI nowcast cannot predict the precipitation intensity, and an 
attempt to combine the two methods (AI hybrid) failed to improve the overall accuracy. However, the 2D flood 
extent predictions with the HRRR and AI hybrid forcings can provide information indicating the future flooded 
area with about 50% accuracy (hit rate) and stream flow prediction showed that the HRRR QPF can provide 
relatively accurate flood peak prediction (-8%). In contrast, the AI nowcast reveals minimal displacement errors 
but underpredicts precipitation intensity. The deep learning method also indicates that the binary tests with low 
threshold, which are commonly employed in the deep learning field, neglect the importance of precipitation 
intensity errors for extreme event studies.   

1. Introduction 

The increase of frequency and magnitude of extreme weather and 
precipitation caused by climate change has received much attention 
(Meehl et al., 2000; USGCRP, 2017; van Oldenborgh et al., 2018). 
Further, ‘tropicalization’, a global trend towards a heavier precipitation 
climate, has been modeled in Europe (Gobiet et al., 2014). Consequen
tially, this change would lead to more flood events in the future, which is 
the second-deadliest and most common natural hazard in the United 
States and world (Ashley and Ashley, 2008; Barredo, 2007; Benito et al., 
2004; Smith and Ward, 1998). According to Brauer et al. (2020), the rate 
and duration of precipitation, land use and soil moisture content, as well 
as topography all have impacts on the severity of flooding. Moreover, 

tropicalization combining with rising sea levels and ocean temperatures 
will only intensify flooding especially along coastal areas (Wing et al., 
2019). To quantify and mitigate flood risks, many tools have been 
developed to simulate flooding at post-event (Bates et al., 2010; Bates 
and De Roo, 2000; de Almeida and Bates, 2013; Srinivasan and Arnold, 
1994; Wang et al., 2011; Wood et al., 1992; Xue et al., 2016), and in real- 
time (Cohen et al., 2018; Gochis et al., 2017; Sampson et al., 2015; Wing 
et al., 2019, 2017). Instead of post-event hydrological reanalysis or real- 
time streamflow simulation, this study explores the options for fore
casting flood events, which could potentially provide a longer lead-time 
for emergency response officials or even the general public to proac
tively respond to possible future flood risks. 

Almost 40 years ago, Georgakakos and Hudlow (1984) discuss the 

* Corresponding author at: School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, United States. 
E-mail addresses: mchen15@ou.edu (M. Chen), li1995@ou.edu (Z. Li), shang.gao@ou.edu (S. Gao), mxue@ou.edu (M. Xue), jj.gourley@noaa.gov (J.J. Gourley), 

kolar@ou.edu (R.L. Kolar), yanghong@ou.edu (Y. Hong).  

Contents lists available at ScienceDirect 

Journal of Hydrology 

journal homepage: www.elsevier.com/locate/jhydrol 

https://doi.org/10.1016/j.jhydrol.2022.128168 
Received 7 March 2022; Received in revised form 30 June 2022; Accepted 2 July 2022   

mailto:mchen15@ou.edu
mailto:li1995@ou.edu
mailto:shang.gao@ou.edu
mailto:mxue@ou.edu
mailto:jj.gourley@noaa.gov
mailto:kolar@ou.edu
mailto:yanghong@ou.edu
www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2022.128168
https://doi.org/10.1016/j.jhydrol.2022.128168
https://doi.org/10.1016/j.jhydrol.2022.128168
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2022.128168&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Hydrology 612 (2022) 128168

2

use of Quantitative Precipitation Forecasts (QPFs) from the Numerical 
Weather Prediction (NWP) models for hydrological forecasting; the 
operational Limited-Area Fine Mesh (LFM) model (Newell and Deaver, 
1981) from the National Weather Service (NWS) at the time had a 
horizontal grid spacing of 127 km, and the on-demand Movable Fine 
Mesh (MFM) model had an improved grid spacing up to 60 km. While 
promising, the lack of spatial specificity needed for hydrological fore
casting and the relatively low accuracy of QPF limited the application of 
model-based QPF to drive hydrological models. With the advancement 
of computing and climate observation technologies, the NWP models 
have improved dramatically in recent decades in terms of their spatial 
and temporal resolutions, accuracy, and coverage (Trenberth, 2010). 
The current operational High-Resolution Rapid Refresh (HRRR, 
Benjamin et al., 2016; Lee et al., 2019) has a horizontal grid spacing of 3 
km with hourly updated forecasts over the contiguous United States 
(CONUS). Convection-allowing, cloud-resolving NWP models have been 
run at 1-km grid spacing (Loken et al., 2017; Xue et al., 2013). However, 
accurate QPF remains a challenge because of many complex factors 
involved in precipitation processes (Ebert and McBride, 2000; Golding, 
2000). Major errors of NWP QPFs include spatial displacement errors 
(Ebert and McBride, 2000), and errors in intensity especially for extreme 
events (Cuo et al., 2011). For short-range precipitation forecasting, the 
proper initialization of existing precipitation fields for the forecasting 
model is also an important issue (Kain et al., 2010; Sun et al., 2014). 

Precipitation nowcasting typically refers to very short-range (1–6 hr) 
forecasting of precipitation, and the traditional nowcasting is mostly 
done by extrapolating observed radar reflectivity fields. Ligda (1953) 
demonstrated the possibility of providing reasonable forecasts based on 
the persistence and movement of radar echoes. This technology has a 
recent technological improvement with the combination of High Per
formance Computing (HPC) and Artificial Intelligence (AI), resulting in 
successful applications in real-world problems including precipitation 
nowcasting (Agrawal et al., 2019; LeCun et al., 2015). In 2019, Google 
Research published a study showing the advantage of using deep 
learning nowcasts to predict 1-hour lead-time precipitation over the 
CONUS, outperforming traditional optical flow extrapolation method, 
persistence, and 1-hour HRRR forecasts (Agrawal et al., 2019). More
over, many recent studies also show successes in deep learning precip
itation nowcasting. Franch et al. (2020) introduce a new deep learning 
model, TAASRAD19, to forecast 1-hour lead-time radar reflectivity 
which is then converted to precipitation rate, yielding a Critical Success 
Index (CSI) of 0.5 over a 9-year sample. While most AI nowcast studies 
evaluate binary coverage as the performance test, Kumar et al. (2020) 
demonstrate their deep learning model reduces the Root-Mean-Square 
Error (RMSE) between forecast and satellite precipitation estimates to 
0.8 mm/hr on 30 min lead-time and up to 1.4 mm/hr on 150 min lead- 
time. Using Global Precipitation Mission (GPM) Integrated Multi- 
satellitE Retrievals (IMERG) datasets, they identify the most signifi
cant error source being underestimation with extreme events. However, 
the hydrological performance of AI nowcasts is generally 
underexplored. 

Flood prediction has a history of different methods from upstream 
level exceedance thresholding, and level-to-level correlations, to hy
drological and hydrodynamic models (Adams and Pagano, 2016). For 
modern operational flood forecasting systems, it is common to use 
Quantitative Precipitation Estimates (QPEs), precipitation nowcasts, 
and NWP QPFs to drive hydrological models (Cuo et al., 2011; Golding, 
2000; Hapuarachchi et al., 2011). Since there is a lag time between the 
precipitation peak and the streamflow peak (Bedient et al., 1988), some 
operational systems are capable of predicting the flood by using the real- 
time observed precipitation products as the forcing dataset. For 
example, the Scottish Environment Protection Agency uses radar and in- 
situ precipitation data to provide streamflow forecasts (Werner and 
Cranston, 2009); the National Center of Environmental Prediction 
(NCEP) adapts the National Water Model (NWM) (Cohen et al., 2018; 
Gochis et al., 2017), while the National Severe Storm Laboratory (NSSL) 

utilizes the Ensemble Framework For Flash Flood Forecasting (EF5) as 
part of the FLASH project (Flamig et al., 2020; Gourley et al., 2017). 
Both NWM and EF5 use the Multi-Radar Multi-Sensor (MRMS) QPEs to 
drive streamflow forecasts for the entire CONUS and outer territories. To 
provide longer range (more than a few hours) and more comprehensive 
flood predictions, it is necessary to utilize nowcasts or QPFs, and the 
flood predictions can be extended beyond streamflow prediction to also 
include two-dimensional (2D) flood extent and flood depth forecasting. 
However, due to the accuracy issues of QPF, the skill of longer flood 
range prediction is still limited, especially at the scales of urban wa
tersheds (Hapuarachchi et al., 2011). More recent hydrological evalu
ation of operational HRRR QPF indicates that even though this advanced 
product is capable of forecasting mesoscale convective systems well, 
QPFs associated with smaller scale precipitation systems often contain 
significant errors making hydrological prediction errors to become too 
large (Lee et al., 2019; Seo et al., 2018). 

This study is an attempt to utilize advanced NWP QPFs and AI pre
cipitation nowcasting for the prediction of flooding triggered by the 
landfalling Hurricane Harvey in 2017. The comprehensive predictions 
include 1D stream discharge, 2D flood extent, and 3D flood depth, using 
the Coupled Routing and Excessive STorage – inundation MApping and 
Prediction (CREST-iMAP) model. This work evaluates the ability of 
state-of-art operational QPFs to predict not only streamflow but also 
flood extents and flood depths, and it presents one of the first studies to 
evaluate the hydrological performance of AI precipitation nowcast 
techniques. The precipitation forecasts and flood prediction results are 
compared with MRMS QPE, US Geological Survey (USGS) stream gauge 
data, MRMS QPE simulated flood extent, Federal Emergency Manage
ment Agency (FEMA) flood insurance claims, and USGS High-Water 
Mark post-event survey data. The rest of this paper is organized as fol
lows. Section 2 describes the QPF datasets, study area, CREST-iMAP 
model, and the deep learning architecture for AI nowcasting. Section 3 
demonstrates the results of the predicted streamflow hydrographs, flood 
extent, and inundation depth compared to the benchmark and other 
ground observations. Section 4 discusses the major findings from the 
results. Section 5 concludes and proposes future studies. 

2. Methodology 

2.1. Forecast rainfall 

This study relies on the applications of operational NWP models that 
provide the QPF products, which are archived in NOAA’s National 
Operational Model Archive and Distribution System. The Rapid Refresh 
(RAP) was first developed in May 2012, built upon the first hourly 
updated operational NWP system in the world, Rapid Update Cycle 
(RUC), back in 1998 (Benjamin et al., 2016, 2004). After two major 
improvements in 2014 and 2016, RAP now consists of multiple meteo
rological data and models to increase accuracy, such as the NOAA 
Gridpoint Statistical Interpolation (GSI), a version of Weather Research 
and Forecasting (WRF) regional model, and the National Center of 
Environmental Prediction (NCEP) Unified Post Processor (UPP). The 
current RAP QPF product can provide hourly updated precipitation 
forecasts out to 18 h at 13-km spatial resolution over the entire North 
America. In this study, the 1-hour lead-time data was obtained from the 
NOAA’s National Center for Environmental Information (NCEI) website 
(https://www.ncdc.noaa.gov/data-access/model-data/model-dataset 
s/rapid-refresh-rap). The HRRR was first released in September 2014 
and finished its first upgrade in 2016, then was deployed as a new 
operational model in July 2018 (Lee et al., 2019). HRRR is a nested 
model that heavily relies on RAP data assimilation, which covers the 
Continental United States (CONUS) and provides hourly forecasts up to 
18 h in the future at 3-km spatial resolution (Benjamin et al., 2016). In 
this study, the 1-hour lead-time HRRR v2 forecast data obtained from 
the University of Utah HRRR data archive (https://home.chpc.utah. 
edu/~u0553130/Brian_Blaylock/cgi-bin/hrrr_download.cgi). All 
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forecast products are 1-hour lead-time since the deep learning precipi
tation nowcasting method in this study can only produce a 1-hour 
forecast due to the limitation of computational resources. The basic 
statistics of precipitation forecast datasets are listed in Table 1. 

2.2. Deep learning precipitation nowcasting 

The advancement in machine learning (deep learning) recently has 
been claimed to be successful when applied to the short-range now
casting of precipitation (Shi et al., 2015). AI precipitation nowcasting, as 
a data-driven and localized method, is adapted to the local environment 
and requires no prior knowledge about weather systems from the model 
developer, which predicts next-step precipitation distribution by a series 
of previous frames from a well-trained model structure. In this study, we 
select the U-Net model structure for the following reasons. First, it is a 
widely adopted structure for precipitation estimation and prediction (Li 
et al., 2020b; Sadeghi et al., 2020). Second, the lightweight framework 
necessitates a fewer number of parameters compared to other models, 
and requires less system memory to train the model. Before the model 
training, some preprocessing steps are conducted for unifying precipi
tation estimates from multiple events. Due to the nature of the non- 
Gaussian distribution of precipitation per frame, one way to normalize 
precipitation data is via logarithmic transformation. Similar to Sønderby 
et al. (2020), precipitation data is transformed and normalized based on 
the following equation. 

R = log(x+ 0.01)/4 

where × is the input rainfall rate, and R is the normalized rainfall 
rates. Subsequently, rainfall data is grouped every 10 frames at 6-min 
increments to target next-hour precipitation forecasts. The Mean 
Square Error (MSE) and Adam, a deep-learning optimizer (Kingma and 
Ba, 2017), are chosen as the objective function and optimizer in this 
setting. The initial learning rate (α)1 is set at 0.001 but is scheduled to 
decrease exponentially with training process to avoid blowing up. Due 
to the limitation of the Graphics Processing Unit (GPU) memory capacity 
(2 GB), this study can only predict a 1-hour lead time given the size of 
the study area, which is 4 time-steps ahead (15 min resolution). In this 
study, the U-Net structured deep learning model is trained by the MRMS 
QPEs for 16 precipitation events listed in NOAA Storm Report (Table 2) 
that caused flooding in the Houston area from 2015 to 2019, except 
Hurricane Harvey, with a total of over 30,000 images. The intensive- 
precipitation-focused deep learning model is then used to forecast 1- 
hour lead-time from 24/08/2017 to 02/09/2017 (10 days). The exper
iment is conducted using a single Nvidia GTX 960 M GPU card. The 
training process took 48 h and the forecasting process took around 300 s 
for 1-hour lead time (4 time steps). 

AI-based nowcasting can effectively capture the spatiotemporal 
correlation with observations, yet it may misrepresent the event 
magnitude, which is a common weakness of AI nowcast (Kumar et al., 
2020). On the other hand, the physical simulations are apt at identifying 
storm cores and thus the event rainfall magnitude. It is presumably 
advantageous to take the respective advantages of both to produce a 
hybrid product. In this study, a conventional non-parametric probability 
matching scheme is taken at each nowcast time step to increase the 
rainfall magnitude of the AI-produced product close to the HRRR fore
casts. The basic idea is to conserve the ranks of the initial rainfall rate for 
a given frame, and its empirical cumulative density function (CDF) is 
modified to match the target CDF. 

2.3. Observed rainfall, flood benchmark, and data 

The observed precipitation product is chosen to be the MRMS radar- 
only, 2-min QPE, which showed high correlations and small error 
compared to the Harris County Flood Control District rain gauge 
network in previous studies (Chen et al., 2020; Li et al., 2020a). This 
data is obtained from the Iowa Environmental Mesonet NWS data 
archive (https://mesonet.agron.iastate.edu/nws/). The benchmark 
flood map is simulated by CREST-iMAP using MRMS 2-min QPE as the 
forcing data. To create the benchmark flood map, the CREST-iMAP goes 
through a warmup period from 01/04/2017 to 24/08/2017 using the 
MRMS 1-hour gauge corrected QPE and then simulates the Hurricane 
Harvey induced flood from 24/08/2017 to 02/09/2017 (10 days), 
driven by the MRMS 2-min QPE. The 10-meter resolution Manning’s 
roughness coefficient field is derived from the landcover data from 
Multi-Resolution Land Characteristics Consortium (MRLC, htt 
ps://www.mrlc.gov/), using a look-up table from the literature (Liu 
et al., 2019; McCuen, 2005). 

Other benchmark data include the two USGS stream gauge (Fig. 1) 
data downstream of Spring (08068500) and Cypress Creek (0809000), 
which are obtained from the USGS Water Information System (USGS 
WIS, https://waterdata.usgs.gov/). The USGS High-Water-Marks 
(HWM) data are manually surveyed post-event water depths by 
measuring the residual water stain or mudlines left on buildings and 
other infrastructure, which is considered as the true ground observations 
of flood depth (Feaster and Koenig, 2017). 

2.4. The CREST-iMAP model 

CREST-iMAP is a hydrological and hydraulic coupled model devel
oped by the Hydrometeorology and Remote Sensing Laboratory at the 
University of Oklahoma, and is designed to operate in near-real-time. It 
is the newly added member of a well-documented CREST modeling 
family, which has been widely applied to multiple operations and ap
plications around the world (Clark et al., 2017; Flamig et al., 2020; 
Gourley et al., 2017; Wang et al., 2011). The CREST-iMAP coupled the 
water balance component of CREST and the 2D hydraulic routing using a 
fully solved Shallow Water Equation with a finite volume method. The 
model can be nested with the CREST/EF5 framework for near-real-time 
operation or as a standalone operation. The model receives precipitation 
data as the driving input over topographical datasets and the CREST 
water balance component generates excessive rainfall, which is then 
routed through the unstructured triangular mesh to generate channel 
flow rate, flood extent, and flood depth. The model calibration is con
ducted for the period from 01/04/2017 to 24/08/2017, using the 
DREAM algorithm (Vrugt, 2016; Vrugt et al., 2009) to optimize all 
water-balance parameters by targeting five different USGS stream 
gauges at midstream (08068275) and downstream (08068500) of Spring 
Creek, as well as upperstream (08068720), midstream (08068800), and 
downstream (08069000) of Cypress Creek. After the model is set and 
warmed-up, the different QPFs and AI nowcasting products were applied 
to CREST-iMAP as the forcing data to produce 1D streamflow, 2D flood 
extent, and the 3D flood depth. The simulation results were saved in the 
model native NetCDF format and are available through HydroShare 
(https://www.hydroshare.org/resource/fae24734d6fc47be8bf0b54d6a 
175d86/). 

2.5. Study area 

Harris County, TX was the most impacted area during Hurricane 
Harvey with 103 casualties, over 40,000 people evacuated, and over 
30,000 water rescues conducted (Murphy, 2018). Fig. 1 shows the 
impacted area of Hurricane Harvey, the hurricane track, and the study 
area of this research. The statistical analysis of different QPFs is con
ducted throughout the entire Harris County area, and the flood analysis 
is conducted at the Spring basin, which is located at the northern part of 

1 Learning rate is a hyperparameter that controls how much change the deep- 
learning model in response to estimated error each time the model weights are 
updated. Some considers the learning rate is the most important hyper
parameter for neural network configuring. 
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Harris County. The hydrologic and flood inundation analysis is focused 
on the Spring Basin, because the two rivers are connected the Lake 
Houston, which is not directly entering the Trinity Bay and Gulf of 
Mexico. Therefore, this focusing basin is less impacted by wind-induced 
storm surges and this study can focus on the precipitation differences 
and its corresponding pluvial and fluvial flood. 

2.6. Statistical metrics 

To compare each forecasting product and evaluate the flood pre
dictability, four levels of statistical tests are conducted in this study. 
First, the benchmark precipitation in 2.3 is used to compare QPFs and 
AI-based nowcasts using statistical measures. Second, the CREST-iMAP 
simulated hydrographs are analyzed using not only standard statistic 
metrics but also hydrological modeling efficiency measures. Third, the 
CREST-iMAP simulated flood extents are analyzed using standard binary 
pattern measures. Fourth, the CREST-iMAP simulated flood depth is 
analyzed against the USGS HWM. All four levels of statistical metrics are 
listed in Table 3. 

The correlation coefficient (CC) over a time series measures the 
strength of an estimate to capture the temporal pattern of the observa
tion. Traditionally, the relative bias is commonly used to measure the 

errors of the estimate as a fraction of the observation value. However, for 
precipitation and streamflow data, the values are either positive or zero, 
so the relative bias value can range from − 1 to +∞ especially when the 
predicted value is much higher than the benchmark value, which could 
causes confusion during aggregation when few large positive relative 
bias value offset most negative values. To avoid the confusion, the 
Normalized bias (NB, fraction) is introduced to normalize the bias from 
− 1 to + 1. The Root-mean-square error (RMSE, mm/hr for precipitation, 
and m3/s for streamflow) measures the distance between the estimates 
and the observation. The Probability of detection (POD) measures the 
ability to predict the benchmark flood extent. The False Alarm Rate 
(FAR) reflects the tendency to overpredict the benchmark flood extent. 
The Critical Success Index (CSI) measures the overall performance of the 
flood predictions compared to the benchmark. The Nash-Sutcliffe coef
ficient of efficiency (NSCE, unitless) measures the effectiveness of the 
model prediction compared to the stream gauge observation. The peak 
flow error (PE, m3/s) calculates the difference between predicted and 
observed peak flow. The peak time error (PTE, hour) calculates the 
arriving time difference between predicted and observed peak flow. 

3. Results 

3.1. Precipitation analysis 

To observe the first level differences of all the precipitation forecast 
products, the accumulated precipitation from 25/08/2017 to 31/08/ 
2017 is plotted in Fig. 2. 

The first clear observation appears to be the spatial resolution dif
ferences, as RAP and HRRR show coarser resolution grid cells across the 
map compared to MRMS and the AI nowcasts. Due to the low spatial 
resolution, RAP can only provide a basic depiction of the precipitation 
core and has a smooth transition from the high precipitation (southeast) 
to the lower precipitating amounts (northwest). As listed in Table 1, 
RAP’s highest mean precipitation rate (7.45 mm/hr), the highest mean 
accumulated precipitation (1081 mm), but low maximum precipitation 
rate (49.83 mm/hr) means that it does not simulate extremes like 
MRMS. The second clear observation is the underprediction of the AI 
nowcasts. The average precipitation rate of AI nowcast during Hurricane 
Harvey is 3.18 mm/hr and its mean accumulated precipitation is only 
190 mm, which is much less than the values of MRMS QPE, which are 
6.16 mm/hr and 830 mm, respectively. Google shows the U-Net 
framework providing well-performed nowcasting precipitation predic
tion from July 2017 to July 2019 (Agrawal et al., 2019). However, for an 
extreme event like Hurricane Harvey, the result indicates there are 
difficulties for machine learning methods to predict the precipitation 
intensity. Magnitude-wise, HRRR QPF is comparable with MRMS QPE 
with the mean precipitation rate of 6.65 and 6.16 mm/hr respectively 
(Table 1). However, the spatial displacement of large precipitation 
amounts from the HRRR is visually clear, where the red circles (Fig. 2) 
provide simple examples where MRMS has low accumulated precipita
tion but the HRRR has a large amount of total precipitation forecast and 
vice versa. The AI hybrid method shows improved precipitation 
magnitude from 3.18 mm/hr to 7.10 mm/hr and the mean accumulated 
precipitation increases from 190 to 930 mm. The CDF-matching method 
to hybrid machine learning and numerical modeling causes multiple 

Table 1 
List of precipitation estimation and forecasting productions and the basic statistics during Hurricane Harvey.  

Name Temporal resolution Spatial resolution Precipitation rate, mm/hr Total precipitation (25/8/2017 to 31/8/2017), mm 

Max Mean Max Mean Min 

MRMS QPE 2 mins 1 km  202.60  6.16 1793 830 287 
RAP QPF 1 h 13 km  49.83  7.45 1469 1081 730 
HRRR QPF 1 h 3 km  236.87  6.65 1640 928 502 
AI Nowcast 6 mins 1 km  71.27  3.18 851 190 80 
AI Hybrid 6 mins 1 km  236.87  7.10 2633 930 419  

Table 2 
List of heavy precipitation events used for deep-learning training.  

Index Start location Flood 
date 

County Fatality Damage (million 
dollars) 

1 Orr St. 31/10/ 
2015 

Harris, 
TX 

2 1.7 

2 SW Houston St. 18/03/ 
2016 

Harris, 
TX 

0 0 

3 NW Hockley 
St. 

18/04/ 
2016 

Harris, 
TX 

8 51 

4 Hooks 
homepark 

01/06/ 
2016 

Harris, 
TX 

0 0.005 

5 SW Almeda Rd. 18/01/ 
2017 

Harris, 
TX 

0 0.5 

6 S Houston St. 29/03/ 
2017 

Harris, 
TX 

2 0.62 

7 NE McNair St. 04/06/ 
2017 

Harris, 
TX 

0 0.01 

8 NE Little York 
Rd. 

24/06/ 
2017 

Harris, 
TX 

0 0.001 

9 Satsuma Dr. 09/07/ 
2017 

Harris, 
TX 

0 0 

10 S Deer Park 21/09/ 
2017 

Harris, 
TX 

0 0.005 

11 NE Spring St. 04/07/ 
2018 

Harris, 
TX 

0 0 

12 SE Englewood 
St. 

08/12/ 
2018 

Harris, 
TX 

0 0 

13 NW Huffman 07/05/ 
2019 

Harris, 
TX 

0 0.25 

14 NW Katy 09/05/ 
2019 

Harris, 
TX 

0 0.05 

15 E Wallis Rd. 23/08/ 
2019 

Harris, 
TX 

0 0 

16 NE Humble 19/09/ 
2019 

Harris, 
TX 

2 565  
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problems: first, the high values of accumulated precipitation appeared 
to be concentrated at the east and northeast pixels at the edge; second, 
the horizontal, belt-shaped high-precipitation artifacts appear at the 
northern part of Harris County. 

To quantify the difference between the benchmark precipitation and 
the precipitation forecasts, the first level statistics are applied to the 
county-wide averages as well as to each pixel from 25/08/2017 to 31/ 
08/2017. The statistical results are listed in Table 4. 

Both county-averaged and pixel-level statistics agree that the AI 

nowcast precipitation forecast has the highest correlation coefficient 
(0.98 and 0.8), the large negative normalized bias (-52.84% and 
–22.96%), and the least RMSE (5.18 mm/hr and 11.87 mm/hr). Among 
all precipitation forecasts, AI nowcast can capture the temporal pattern 
very well, despite that there is a large deficit in precipitation magnitude. 
HRRR QPFs show a very low correlation with benchmark precipitation 
both at county average (0.55) and pixel-level (0.13). The HRRR QPFs 
also have the largest RMSE among all other precipitation forecasts 
despite having the clostest to optimal bias (NB is 8.45% and 1.03% for 
county-averaged and pixel-level analysis). RAP QPFs have a good cor
relation with the benchmark when averaged over Harris County (0.76) 
but poor correlation at each pixel (0.31), which might be caused by its 
coarse spatial resolution. The AI hybrid method is proved to be less 
correlated with the benchmark compared to AI nowcasts and has higher 
RMSE. The attempt to combine AI nowcast and HRRR provides worse 
statistical results, which can be caused by the artifacts found in Fig. 2. To 
visualize the differences, the county-averaged precipitation estimates 
and forecasts are plotted in Fig. 3. 

The AI nowcast (green) appears to follow all the peaks as the 
benchmark (black) and match well when the precipitation is light. 
However the magnitude of the peaks are only equivalent to a fraction of 
the benchmark data, and the accumulated rainfall amount indicates a 
severe underprediction. All other precipitation forecasts (RAP, HRRR, 
and AI hybrid) overpredict most of the precipitation peaks before 27/ 
08/2017 and after 29/08/2017, while underpredicting during 28/08/ 
2019, which explains the poor statistical results displayed in Table 4. As 
shown in Fig. 3, the HRRR QPF (blue) and AI hybrid (plum) forecasts are 
overlapped in most days, which indicates that the CDF-matching 
method not only increases the magnitude of AI nowcasts but also 
picks up a lot of information from the HRRR. Since the HRRR has the 
spatial displacement problem, this property also passes along to AI 
nowcast causing the reduced predictability. 

The pixel-level statistical results are plotted in Fig. 4. As shown in the 
plot and Table 4, RAP and HRRR have a low temporal correlation with 
benchmark data throughout the area, and AI nowcasts and AI hybrid 
predictions have a higher correlation. Deep learning predictions appear 
to create minor artifacts in multiple radial circle patterns on the tem
poral correlation with the benchmark data. For bias, the numerical 

Fig. 1. The Harris County, TX and Spring Basin, showing the track of Hurricane Harvey, WHM locations, USGS gauge locations, and the DEM of Spring Basin.  

Table 3 
List of statistical metrics used in this study.  

Statistic metrics Equationa Value 
range 

Perfect 
value 

Correlation 
coefficient (CC) 

CC =
∑N

n=1
(
fn − f

)
(rn − r)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

n=1
(
fn − f

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N
n=1(rn − r)2

√

− 1, 1 1 

Normalized bias 
(NB) 

NB =
1
N
∑N

n=1
fn − rn

fn + rn 

− 1, 1 0 

Root-mean-square 
error (RMSE) RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

n=1

(
fn − rn

)2
√ 0, +∞ 0 

Probability of 
detection (POD) 

POD =
F1 ∧ R1

F1 ∧ R1 + F0 ∧ R1 

0,1 1 

False alarm ratio 
(FAR) 

FAR =
F1 ∧ R0

F1 ∧ R0 + F1 ∧ R0 

0,1 0 

Critical success index 
(CSI) 

CSI =
F1 ∧ R1

F1 ∧ R1 + F0 ∧ R1 + F1 ∧ R0 

0,1 1 

Nash-Sutcliffe 
coefficient 
efficiency (NSCE) 

NSCE = 1 −

∑N
n=1

(
fn − rn

)2

∑N
n=1(rn − r)2 

-∞, 1 1 

Peak flow error (PE) PE = fmax − rmax -∞, +∞ 0 
Peak time error 

(PTE) 
PTE = t(rmax) − t

(
fmax

)
-∞, +∞ 0 

a Variables: n and N, sample index and a total number of samples, f represents 
the precipitation forecast products from the numerical modeling and AI now
casts, r represents the reference including the MRMS QPE and USGS stream 
gauge observations, F and f represent the model simulation results of binary 
classification and values respectively; R and r represent the reference data of 
binary classification and values respectively; 1 and 0 means positive (wet) and 
negative (dry) classifications. 
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modeling forecasts (RAP and HRRR) have most of the high bias 
concentrated at the southeastern corner, which is towards the storm 
core. This indicates overprediction of precipitation at the highest in
tensity cores for the numerical modeling forecasts. The artifact of the AI 
hybrid found in Fig. 2 is magnified in the bias analysis, where the hor
izontal stripes of high bias values concentrate at the northern half of the 
map. In this study, RAP has lower RMSE than HRRR, despite the fact that 
the HRRR is a newer and higher-resolution version of RAP, and the large 
RMSE values are concentrated towards the storm core. 

Based on the statistical analysis, the results indicate that there are 
differences between the precipitation forecasts and the benchmark, 
where the RAP QPF is too coarse to represent the details of the storm, the 

Fig. 2. The accumulative precipitation during Hurricane Harvey of A) MRMS QPE, B) RAP QPF, C) HRRR QPF, D) AI nowcast, and E) AI hybrid, the red ovals circle 
the two examples of displacements. 

Table 4 
The first level statistical results between precipitation forecasts and the bench
mark precipitation estimation.  

Name County averaged statistic  Pixel statistic  

CC NB(%) RMSE, 
mm/hr  

CC NB(%) RMSE, 
mm/hr 

RAP QPF  0.76  24.38  5.41   0.31  34.29  15.72 
HRRR QPF  0.55  8.45  7.31   0.13  1.03  20.06 
AI nowcast  0.98  − 52.84  5.36   0.80  –22.69  11.87 
AI hybrid  0.62  17.54  6.51   0.66  7.55  13.16  

Fig. 3. The county averaged precipitation rate (left) and the county averaged accumulative precipitation (right).  
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HRRR QPF has displacement error, the AI nowcast fails to predict the 
precipitation intensity, and the AI hybrid forecast has boundary and 
artificial noise issue. Yet, a complete agreement between the weather 
forecast and the weather radar observation is not expected, it would be 
worth to explore the potentially useful information from the QPF driven 
flood prediction. As the forecast technology improves in the future, the 
flood prediction improvement will hence to be examined based on the 
presented results in section 3.2. 

3.2. Hydrological analysis 

The CREST-iMAP yields simulated hydrographs using forcing from 
the MRMS benchmark and all the precipitation forecasts from 15/08/ 
2017 to 03/09/2017 at two USGS gauge locations at Cypress Creek and 

Spring Creek. Spring Creek is located at the northern part of the Spring 
basin, which includes an underdeveloped area and did not show too 
much overbank flow during Hurricane Harvey; while Cypress Creek is 
located at the southern part of the basin, across multiple developed 
urban areas, and had obvious overbank flow during Hurricane Harvey 
(Chen et al., 2020). The simulation results are plotted and listed in Fig. 5 
and Table 5. 

In Fig. 5, with the exception of the AI nowcasts, all precipitation 
forecasts generate a second flood peak at both Cypress and Spring creek, 
which was not observed by USGS stream gauges. As AI nowcast under
predicts the total precipitation amounts and rates, it generates a smaller 
flood peak consequentially, but it has a high score on NSCE (0.71) and 
CC (>0.9) compared with the USGS gauge data as shown in Table 4. The 
AI hybrid provides an undesirable flood forecast with NSCE less than 0.7 

Fig. 4. The statistic results (CC, Bias, and RMSE) at each pixel for RAP QPF, HRRR QPF, AI nowcast, and AI hybrid, compared to the benchmark precipitation 
(MRMS QPE). 

Fig. 5. The flowrate simulation during Hurricane Harvey at the Cypress Creek (southern stream) and Spring Creek (northern stream).  
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and positive PTE, which means the forecasted flood peak is later than the 
observed flood peak. The AI hybrid (plum line in Fig. 5) carries some 
features from the HRRR, which causes a non-existent second flood peak. 
The NWP modeled QPFs produce lower NSCE scores on flood prediction 
comparing to the deep-learning methods, in general. However, HRRR 
provides relatively more accurate predictions on flood peak and less 
flood peak time error, which are significant for the emergency responses 
and NWS field operations as the flood peak and flood time is the most 
important factors to mitigate the damage and protect properties. Over
all, the precipitation forecasts cannot match the performance of the 
benchmark as expected, and HRRR QPF provides a relatively better 
flood magnitude prediction among four precipitation forecasts in this 
study. The benchmark precipitation data (MRMS) is utilized in the 
FLASH project as the forcing data for the CREST-EF5 model to produce 

the near-real-time streamflow (Flamig et al., 2020; Gourley et al., 2017). 
The FLASH project has shown its benefit as a supporting tool during 
Hurricane Harvey according to the NWS service assessment report 
(Murphy, 2018), therefore, with the consideration of the error propa
gated from the precipitation forecasts, the 1-hour lead-time flood pre
diction can be a very useful tool. The AI nowcast predicts the flood 
timing better than others, so if the first responders know the semi- 
accurate flood time with hours of lead-time, it is a successful step for 
flood prediction only if the method could improve in the precipitation 
intensity forecast. 

As shown in the hydrological analysis, the current structure of using 
precipitation forecasts to drive CREST-iMAP has considerable value for 
the automated real-time flood prediction operation. Even though, no 
forecast data can provide a comparable flood prediction as MRMS 
benchmark observation, but the errors from the precipitation forecasts 
are expected and the prediction results do provide flood information 
with much longer lead-time. As MRMS is a real-time weather radar 
precipitation product, it can provide very short to no lead-time for flood 
prediction, depending on the lag time of the individual flood event. 
Therefore, the weather forecast based flood prediction has the advan
tage of lead-time over the benchmark but the disadvantage on accuracy, 
which can be potentially balanced in flood warning operations. 

3.3. Flood extent analysis 

The CREST-iMAP can not only simulate the streamflow but also the 
2D flood extent and flood depth. We take the maximum flood depth at 
every pixel through all the time steps to construct the maximum flood 
extent map for all precipitation forecasts and benchmark-forced simu
lations, which is shown in Fig. 6. The binary statistical results are listed 
in Table 6. 

Although previous statistical and hydrological analysis shows drastic 
differences between the different precipitation forecasts, the maximum 
flood extent maps are very similar, and the binary statistics in Table 6 

Table 5 
The hydrological analysis of precipitation forecasts and benchmark compared to 
the USGS stream gauge data.   

Cypress Creek 08069000  

MRMS RAP HRRR AI Nowcast AI Hybrid 

NSCE 0.85 − 0.05 0.66 0.71 0.44 
NB(%) 4.23 36.96 13.54 − 25.54 5.05 
CC 0.94 0.97 0.91 0.92 0.90 
RMSE (m3/s) 90 255 135 135 187 
Peak Error (m3/s) 301 834 219 − 149 579 
Peak Time Error (hour) − 6 16.75 56.5 − 9.25 2   

Spring Creek 08068500 
NSCE 0.98 0.50 0.48 0.71 0.67 
NB(%) 18.48 52.66 13.08 − 8.82 16.65 
CC 0.99 0.92 0.77 0.99 0.85 
RMSE (m3/s) 59 588 627 441 367 
Peak Error (m3/s) − 298 340 − 198 − 1118 − 544 
Peak Time Error (hour) − 3.25 − 11.25 − 30.5 − 2.75 11.5  

Fig. 6. The 2D flood extents maps display the intersection of A) RAP QPF, B) HRRR QPF, C) AI nowcast, D) AI hybrid predictions with those from the benchmark 
flood map. 
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are numerically close, too. The AI nowcast is the only one that has a 
lower POD (0.48) and a lower CSI (0.35), which is likely due to its un
derestimation of precipitation amount as shown in Table 1 and Fig. 3. 
Based on the results in Fig. 6, the CREST-iMAP appeared to neutralize 
most of the differences between different precipitation forecasts to 
produce similar maximum flood maps since the maximum flood extent 
has positive correlation with the total precipitation amount during the 
flood events (O’Hara et al., 2019). There are no successful predictions 
for the upper Cypress Creek (southwestern part of the map). All flood 
predictions other than the AI nowcasts can achieve a CSI of about 0.4 
and POD about 0.6, which can still provide limited information and 
guidelines for future flooding. However, the over 45% false alarming 
could mislead preparatory action to the flood. 

The analysis of the initial inundation (water depth > 5 cm) time is 
listed in Fig. 7, where the color ramp represents the unified time steps, 
which is equivalent to 30 mins for easier display due to high temporal 
resolution of 2D flood simulation (10 s). The dark blue color represents 
the first day of the study period (25/08/2017 00:00) and the dark red 

color represents the end of the last day of the study period (29/08/2017 
24:00). For example, in the figure, all maps show dark blue color as the 
center of the main streamlines, which represent the river channels that 
have water running at the beginning of the period. The bar plot on the 
right column of Fig. 7 represents the distribution of the flood time dif
ference between the flood prediction and the benchmark flood extent, 
where the red dashed line is the 0-difference line and the black dashed 
line represents the mean differences. Negative values indicate the pre
dicted flood comes earlier than the benchmark and the positive value 
means the predicted flood comes later than the benchmark. 

For the benchmark flood map, most of the inundation occurs around 
88 ~ 150 time-steps, which are late in the 26th to the morning of the 
28th of August 2017. This result corresponds with the county-average 
precipitation results in Fig. 3, where the benchmark (black line) shows 
the first peak of precipitation about 20 mm/hr around 1200 UTC on the 
26th and two large rainfall peaks (30 mm/hr) on the 27th and early on 
the 28th of August. The flow dynamic analysis also picks up the over
bank flow of the rivers where the color ramp changes from the center 
outward, from dark blue (had water in channel on 25th) to light green 
(overbank flooded on 27th) then to dark red (over bank flooded on 
29th), which represents the river experiencing multiple overbank flows 
throughout the study period. The flood prediction from the RAP and 
HRRR QPF show much more blue (earlier inundation) compared to the 
benchmark, which corresponds to the time when the RAP (red) and 
HRRR (blue) have their largest peak precipitation rates (46 mm/hr and 
34 mm/hr respectively) on the 26th of August in Fig. 3. These simulated 
(artifitial) extreme precipitation rates can cause flood inundation 

Table 6 
The flood extent binary statistics and FEMA flood claim coverage results.   

POD FAR CSI 

RAP QPF  0.57  0.46  0.38 
HRRR QPF  0.62  0.47  0.40 
AI Nowcast  0.48  0.43  0.35 
AI Hybrid  0.63  0.47  0.40 
MRMS  1.00  0.00  1.00  

Fig. 7. The half-hourly flood inundation time maps between the benchmark flood map (left) and the predictions (middle), as well as the time differences distri
bution (right). 
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immediately, which leads to an earlier inundation than the benchmark. 
Since the HRRR has higher spatial resolution and greater peak precipi
tation rates than the RAP presented in Table 1, the initial inundation 
time map of the HRRR has more late (red) inundation along the river 
channels than the RAP predicted inundation time, which indicates that 
there is more overbank flood with reasonable time lags represented in 
the HRRR than the RAP. Due to the spatial resolution differences, low 
resolution RAP provides uniform precipitation on river channel, upper 
and downer portion of a reach segment, as well as the basin catchment. 
On the other hand, the higher resolution HRRR could provide higher 
precipitation rate at catchment but lower rate at channel at the same 
time step as the RAP, but water routing from land to channel could take 
longer time, so the higher resolution forecast (HRRR) showed more 
delayed flood than the lower resolution forecast (RAP). A more 
comprehensive study will be needed to provide explicit understanding of 
this relationship, and the aforementioned hypothetical scenario is pro
vided to help understanding the possible causes of the flood time dif
ferences. The AI nowcast-predicted inundation time map shows more 
light blue (32 hr) and green (48 hr) compared to other predictions, 
which is caused by the low precipitation intensity that led the delayed 
water accumulation on the surface. The AI hybrid prediction shows 
earlier inundation than the benchmark, which is very similar to the 
HRRR prediction. Overall, AI hybrid and HRRR predictions have over 
70% of wet pixels (74% and 72% respectively) that are flooded earlier 
than the benchmark, and RAP prediction has 66% of wet pixels flooded 
earlier than the benchmark. Even with the significant underprediction of 
precipitation rate from AI nowcast, its flood prediction has about 50% of 
wet pixels flooded earlier than the benchmark. 

The predicted flood extent provides more useful information than the 
hydrograph predictions. The flood map predicted by the HRRR and RAP 
QPFs can provide information about the location of possible fluvial and 
pluvial floods, however, the flood prediction times are not reliable. 
Machine learning prediction methods show little to no value in the flood 
extent analysis due the underprediction of the precipitation intensity. 

3.4. Flood depth analysis 

50 USGS High-Water Mark (HWM) sites are located in the Spring 
basin (Fig. 1), where the water depth values are extracted from all flood 

maps including the benchmark and predicted flood maps. In Fig. 8, the 
scatter plot of the benchmark flood depth and predicted flood depth 
against the HWM data is presented. As the previous study indicates the 
error of simulated Harvey flood depth is up to 1 m (Wing et al., 2019), it 
is no surprise that the benchmark (black dots) cannot align perfectly 
along the diagonal, and the predicted flood depths only perform worse. 
As shown in Fig. 8, almost all predicted flood depths are below the di
agonal except one location that is predicted by HRRR QPF with CREST- 
iMAP (blue dots). Since AI nowcast underpredicts the precipitation and 
associated flood, there are 38 out of 50 HWM sites that are predicted to 
be not inundated under this scenario. Other above-the-diagonal dots are 
the ones that HWM data shows 0 but the flood predictions indicate 
positive values. Overall, all the flood predictions underpredict the 
inundation depth and provide little value for flooding emergency 
responses. 

The error distributions of inundation depths are plotted in Fig. 9. The 
plots show that no flood prediction error is as centered to 0 as the 
benchmark estimation (MRMS). Second to the benchmark, the RAP QPF 
can lead to a predicted flood depth that is slightly better than HRRR 
QPFs and the AI hybrid method-predicted flood depths. This result, 
again, demonstrates the similarity of HRRR QPF and AI hybrid fore
casting, where their flood depth prediction errors are almost identical. It 
raises the speculation that using CDF-matching technique to hybrid 
machine learning and numerical modeling might pick up too much 
unnecessary information from the target dataset (HRRR in this study). 

In general, using RAP QPF, HRRR QPF, AI nowcast, and AI hybrid 
forecast can only provide limited information about the upcoming flood 
inundation depths for an extreme event. However, the flood depth 
estimation is a common insufficiency of many popular flood models, 
which has been shown in previous studies (Chen et al., 2021; Wing et al., 
2019). Therefore, the error from the precipitation forecasts combines 
the hydraulic model error that deviate the predicted flood depth further 
away from the HWM measurements. At the current state of improve
ment for hydrologic modeling and weather prediction, the overarching 
goal of higher accuracy on flood depth predictions is yet to be reached. 

4. Discussion 

The NWP-based QPFs show poor predictability in precipitation 

Fig. 8. The scatter plot of flood inundation depths of benchmark flood map and predicted flood map against USGS HWM data.  
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spatial and temporal distribution, even though their predicted total 
quantity is relatively accurate. One possible cause could be the selection 
of the forecasted rain fields, which we select the + 1-hour lead time 
forecasts while RAP and HRRR can forecast up to + 18 h. The study of 
Seo et al. (2018) suggests that the RAP and HRRR QPFs perform better 
with + 4 ~ +6 h lead time, indicating that the + 1-hour forecasts are not 
necessarily the most reliable QPF product. Another recent study (Yue 
and Gebremichael, 2020) indicated that all the HRRR forecast including 
+ 1 hr lead-time has strong agreement with the observation, while 
slightly over-prediction the magnitude for a half of the hurricane event. 
However, due to the limited computational resources, the requirement 
of hyperresolution precipitation for hydrological forecast, and the heavy 
GPU memory requirements, the AI methods will not likely forecast>3 h 
of lead time (only limited to 1-hour lead time in this study) for any 
machine at current time. Therefore, certain amount of error from nu
merical modeling forecasts are expected, and the predictability study 
over different lead-times will be conducted in the future. However, the 
well-known QPF issues still exist, such as the underforecasting the 
convective system rainfall (RAP) and spatial displacement errors 
(HRRR), which are likely to present in the other forecast periods. The 
HRRR Ensemble (HRRRE) project was proven to mitigate those errors 
(Carlberg et al., 2020), which will lead to a better flood forecast once the 
HRRRE being an operational product. 

The AI nowcast method lacks the ability to forecast the extreme 
precipitation event, such as Hurricane Harvey. The AI model is trained 
by all precipitation events in the Houston area from 2015 to 2019 that 
are listed in NOAA storm report and have caused urban flooding, except 
Hurricane Harvey, which means it is trained specifically for high- 
intensity precipitation scenarios. But the results indicate the method 
cannot reproduce the precipitation intensity of Hurricane Harvey and 
provides no useful information for local flood prediction. Based on the 
study done by Google Research, the U-Net machine learning method 
outperforms HRRR QPF and the Optical Flow method using precision- 
recall curve analysis (Agrawal et al., 2019). This statement still holds 
in this case study, however, as a binary analysis conducted in the 
aforementioned study, the lack of predicted precipitation intensity is not 
revealed in the precision-recall curve analysis. Although the precision- 
recall curve is a common and powerful scoring tool for machine 

learning, this test is not sufficient for hydrological and hydrometeoro
logical studies, since the precipitation intensity is as important, if not 
more, as its spatial–temporal placement. Therefore, deep learning 
methods for hydrological prediction still require much effort from the 
scientific community to improve the technology. 

As a preliminary attempt to combine the results of AI nowcasts and 
numerical model outputs, the CDF-matching technique is used in this 
study to produce the AI hybrid forecasts, but failed to perform well in 
this case study. It has been shown in the previous section that the 
technique creates artifacts and border effects, but it also shows that the 
technique alters the spatial–temporal distribution of the AI nowcast 
towards the HRRR, which leads to the similarities between the HRRR 
and the AI hybrid in section 3.3 and 3.4. Since the AI nowcast is able to 
capture the spatial–temporal pattern of the MRMS estimation, 
improving the precipitation intensity forecast but not changing its 
pattern could be a future direction for deep-learning nowcasting ap
proaches. Given that the AI nowcast model could produce high- 
resolution (3 km, 15 mins) forecast within minutes for the 10 days 
period for 276 by 216 cells using a single GPU unit, this method still has 
the advantage on computational efficiency, compared to HRRRE 
experiment that has used 144 parallel nodes to power WRF-ARW to 
simulate 1580 by 1000 meshes over the full CONUS (Dowell et al., 
2018). With improvement on its forecast performance, AI nowcasting 
method could potentially be a computationally efficient forecast method 
in the future. 

Lastly, the maximum flood map analysis using CREST-iMAP neu
tralizes or smooths much of the differences between precipitation fore
casts as the total accumulated precipitation dictates the maximum flood 
extent. The results indicate the QPF with a higher spatial-resolution 
would potentially improve the flood timing forecast, yet, a more 
comprehensive study is needed to examine the importance and impacts 
of spatial resolution to flood extent forecast. Since the RAP and HRRR 
QPFs have a reasonable forecast of total precipitation amount over the 
region, the flood extent analysis results for numerical modeling are 
acceptable and provide indications for flood forecasts. Therefore, even 
with certain missing inundation scenarios, the QPF + CREST-iMAP 
could still potentially provide preliminary information about the final 
outcome of a future flood event. 

Fig. 9. The flood depth error distribution between USGS HWMs and benchmark flood map (MRMS QPE) and predicted flood maps of RAP QPF, HRRR QPF, AI 
nowcast, and AI hybrid. 
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5. Conclusion 

The ability of precipitation forecasts to predict flood discharges, 
inundation extents, and flood depth has been tested using numerically 
modeled QPFs (RAP and HRRR) and deep learning nowcasts (AI nowcast 
and AI hybrid) with + 1-hour lead time. None of the precipitation 
forecasts can provide comparable flood information as the radar-based 
benchmark (MRMS), which neither the NWP models nor any now
casting method is expected to be as accurate as weather radar obser
vation. The ‘benchmark’ in this study is an ultimate and overarching 
goal for the weather forecasting community. When the real forecasting is 
needed for the future and the observation is not available, the numerical 
weather prediction model QPFs can provide general information about 
flood return period and inundation outcomes, where the HRRR slightly 
outperforms the RAP. The AI nowcast is incapable to capture the pre
cipitation intensity of Hurricane Harvey, which indicates the potential 
inability of such method, as well as the inability of common machine 
learning performance tests to reveal such information. 

The AI nowcast method can forecast the spatial–temporal pattern in 
high-resolution and extent of the precipitation in a very short amount of 
time; it will be the future objective to combine the AI nowcasts and QPFs 
using different methods, as the CDF-matching technique fails to improve 
the performance of the hybrid approach evaluated in this study. The 
NWP QPFs have spatial displacement errors underlying most of the QPF 
total error, but the ensembled weather forecasting products (e.g. HRRR- 
Ensemble) should reduce such errors by theory, which should be further 
studied to provide improved flood severity prediction. Further, flood 
predictability analysis with longer lead-time is needed to study the 
possible best combination of QPF + CREST-iMAP to provide the best 
possible flood forecast for local emergency response agencies. 
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