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ABSTRACT

A three-dimensional (in space and time) object identification algorithm is applied to high-resolution

forecasts of hourly maximum updraft helicity (UH)—a diagnostic that identifies simulated rotating storms—

with the goal of diagnosing the relationship between forecast UH objects and observed tornado pathlengths.

UH objects are contiguous swaths of UH exceeding a specified threshold. Including time allows tracks to

span multiple hours and entire life cycles of simulated rotating storms. The object algorithm is applied to 3 yr

of 36-h forecasts initialized daily from a 4-km grid-spacing version of the Weather Research and Forecasting

Model (WRF) run in real time at the National Severe Storms Laboratory (NSSL), and forecasts from the

Storm Scale Ensemble Forecast (SSEF) system run by the Center for Analysis and Prediction of Storms for

the 2010 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. Methods for visualizing UH

object attributes are presented, and the relationship between pathlengths of UH objects and tornadoes

for corresponding 18- or 24-h periods is examined. For deterministic NSSL-WRF UH forecasts, the re-

lationship of UH pathlengths to tornadoes was much stronger during spring (March–May) than in summer

(June–August). Filtering UH track segments produced by high-based and/or elevated storms improved

the UH–tornado pathlength correlations. The best ensemble results were obtained after filtering high-based

and/or elevated UH track segments for the 20 cases in April–May 2010, during which correlation coefficients

were as high as 0.91. The results indicate that forecast UH pathlengths during spring could be a very skillful

predictor for the severity of tornado outbreaks as measured by total pathlength.

1. Introduction

Recent National Oceanic and Atmospheric Admin-

istration (NOAA) Hazardous Weather Testbed (HWT)

Spring Forecasting Experiments (e.g., Clark et al. 2012)

in which convection-allowing1 modeling systems have

been tested for severe weather forecasting have made it

increasingly clear that fully exploiting the information

provided by such systems requires new and innovative

model diagnostics, verification, and visualization strat-

egies. This need arises because existing strategies utilize

relatively coarse convection-parameterizing modeling

systems that can only provide information on charac-

teristics of the forecast severe weather environment. In

contrast, convection-allowing models explicitly simulate

convection, providing direct information on attributes

and related hazards from explicitly simulated storms.

Accurately predicting the environment remains impor-

tant (e.g., Coniglio et al. 2010), but, given the wide range

of storm modes observed in similar regions of severe

weather parameter space (e.g., Thompson et al. 2003,

2007; Grams et al. 2012), explicit information on forecast

storm attributes adds significant value to the forecast.
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1 The term convection allowing refers to simulations using

the maximum grid spacing (or below) at which convection can

be treated explicitly and midlatitude MCSs can be adequately re-

solved, which is generally thought to be ;4 km (Weisman et al.

1997).
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One challenge in providing useful information on fore-

cast storm attributes is that convective storms evolve on

time scales of order minutes, which are much shorter than

typical model output frequencies of 1–3 h. To monitor

fields between model output times, Kain et al. (2010)

developed a strategy in which individual gridpoint

temporal-maximum values from each hour are stored

in two-dimensional arrays and saved at hourly output

intervals. These hourly maximum fields (HMFs) pro-

vide useful information on peak intensity and track

of simulated storm features without storing all model

fields every time step. One particularly valuable HMF

designed to track rotation in simulated storms is up-

draft helicity [Kain et al. (2008); hereafter, UH denotes

the hourly maximum quantity], which is computed by

taking the integral of the vertical vorticity times the up-

draft velocity between 2 and 5 km AGL. Participants in

recent NOAA/HWT Spring Forecasting Experiments

have noticed that, oftentimes, the appearance of rela-

tively intense swaths of UH in convection-allowing fore-

casts is a good indicator of supercells and associated

hazards. However, participants have also noted that the

perceived utility of UH was limited simply because of

their unfamiliarity with the typical range of UH values

and the lack of a documented relationship to observed

severe weather.

Sobash et al. (2011) began addressing these issues

using forecasts from a 4-km grid-spacing version of the

Weather Research and Forecasting Model [WRF; using

the Advanced Research WRF (ARW) dynamic core

(Skamarock et al. 2008)] run in real time by the National

Severe Storms Laboratory (NSSL) during spring 2008.

Sobash et al. (2011) developed a simple method that

involved identifying extreme values of UH and treating

these as ‘‘surrogate’’ severe weather reports from which

forecast severe weather probabilities were computed

using kernel density estimation with a Gaussian kernel.

These forecast probabilities were verified against ob-

served storm reports and were found to be quite skillful,

with the combination of best skill and reliability ob-

tained by defining surrogate severe reports using a UH

threshold of about 35 m2 s22 and a sigma value, or

bandwidth, for the Gaussian kernel of about 200 km.

This study aims to build on previous work by further

examining the statistical properties of forecast UH and

its relationship to observed severe weather. Further-

more, methods for visualizing forecast attributes of UH

from deterministic and ensemble prediction systems are

presented that quickly convey useful information to

forecasters. These aims are accomplished through the

application of a three-dimensional (in space and time)

object identification algorithm to forecast UH. Objects

identified by the algorithm are contiguous regions, or

tracks, of UH exceeding a specified threshold. Once UH

objects are identified, attributes like length and maxi-

mum intensity are computed for each object.

The concept of ‘‘object based’’ forecast verification has

become increasingly popular for verifying high-resolution

forecasts because it addresses shortcomings in traditional

methods that rely on exact matches of paired model–

observation grid points (e.g., Ebert and McBride 2000;

Davis et al. 2006a,b). These traditional methods harshly

penalize high-resolution forecasts containing high-

amplitude features with sharp gradients (e.g., Baldwin

et al. 2001; Mass et al. 2002; Gilleland et al. 2009; Clark

et al. 2010), provide limited diagnostic information on

forecast errors, and are often inconsistent with subjective

evaluations (Kain et al. 2003). In contrast, object-based

methods provide meaningful diagnostic information on

forecasts errors like displacement, orientation, and in-

tensity, and they are designed to more closely mimic

subjective evaluation approaches (Davis et al. 2006a).

Until recently, object-based approaches have only con-

sidered two-dimensional spatial objects. However, recent

work using the Method for Object-based Diagnostic

Evaluation (MODE; Davis et al. 2009) has incorporated

the time dimension. Thus, ‘‘3D objects’’ are contiguous

regions of grid points encompassing both space and time.

Incorporating time results in a much more powerful di-

agnostic tool that provides important information on as-

pects of phenomena attributes like timing, evolution, and

translation speed, which would not be available by only

considering the spatial dimension. In fact, we believe that

a 3D object-based algorithm will be a particularly pow-

erful tool for warn-on-forecast applications in which very

short-range/high-resolution ensemble forecasts will be

used to forecast the evolution and timing of hazardous

convective weather (Stensrud et al. 2009). The 3D object

algorithmapplied hereinwas developed in house atNSSL,

and was specifically designed for the current application

to UH. Including the time dimension allows UH tracks

to span multiple forecast hours and encompass entire life

cycles of simulated rotating storms. As of this writing,

the next community release of the Developmental Test-

bed Center’s Model Evaluation Tools (MET; current

version available online at http://www.dtcenter.org/met/

users/downloads/) is planned to have 3D capabilities in

MODE.

In this study, the relationship of forecast UH path-

lengths to observed tornado pathlengths is examined.

Compared to other tornado attributes (e.g., number and

intensity), pathlengths are a preferredmetric because, as

noted by Edwards et al. (2004), pathlengths can be more

precisely measured during storm surveys, and cumulative

pathlength is a very good indicator for the overall se-

verity of a tornado outbreak. Thus, a strong relationship
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between total tornado and forecast UH pathlengths

would mean that forecast UH could be used as a skillful

predictor for the overall severity of a tornado outbreak.

Ideally, forecast UH paths would be verified against ob-

served mesocyclone paths (i.e., ‘‘observed UH’’ or ver-

tical vorticity).Work is on going at NSSL to develop such

a product for verification purposes using the Vortex De-

tection and Diagnosis Algorithm (VDDA; Stumpf et al.

2004) within theNSSLWarningDecision Support System–

Integrated Information (WDSS-II; Lakshmanan 2002)

software package. Future applications of the 3D object

algorithm will use this WDSS-II-derived dataset with

a strategy similar to that used herein.

Convection-allowing models can reproduce supercell-

like storms with strong rotation at the scale of large

mesocyclones. Thus, we expect at least some degree of

correspondence between forecast UH and observed

tornado tracks, because most tornadoes (especially long-

track ones) are produced by supercells. However, it is not

clear how strong the relationship will be because UH

tracks in convection-allowing simulations often emanate

from simulated storms that are elevated [i.e., inflow is

drawn from an unstable layer above the surface; Colman

(1990)] and/or high based and, thus, would have a low

chance of producing a tornado (e.g., Trapp et al. 2005a).

In addition, even supercells that produce tornadoes often

do so for only a fraction of their lifetime. Furthermore,

strong/long-lived UH tracks sometimes originate from

features in simulated organized convective systems, like

line-end vortices. Finally, the leading edges of strong gust

fronts where there are strongly sheared updrafts can also

result in high values of UH (e.g., Sobash et al. 2011).

Tornadoes occurring with such MCS-related features do

happen, but they are much less frequent and usually

weaker and shorter lived than tornadoes from supercells

(e.g., Trapp et al. 2005b).

Despite the potential for ‘‘false alarms’’ using UH

tracks to predict tornadoes, increased knowledge of the

relationship with tornadoes should be beneficial to fore-

casters. The remainder of this study is organized as fol-

lows. Section 2 contains information on the models

examined, the tornado report database, and the 3D ob-

ject algorithm. Section 3 contains results from an analysis

of deterministic and ensemble forecasts, and section 4

contains a summary and conclusions.

2. Model specifications and methodology

Deterministic forecasts are examined using a version

of the WRF-ARW run in real time at NSSL (hereafter,

referred to as NSSL-WRF; Kain et al. 2010). The anal-

ysis period covers 31 January 2008, which is when NSSL

began archiving UH fields, to 31 December 2010 (1016

cases). The forecasts are initialized daily at 0000 UTC

and integrated for 36 h. The 3D object algorithm is ap-

plied to forecast hours 13–36, corresponding to the 24-h

period 1200–1200 UTC. This 24-h period is ideal be-

cause it matches the period over which the Storm Pre-

diction Center (SPC) issues their initial day-1 severe

weather outlooks, it avoids the first 12 h of the forecast

when model ‘‘spinup’’ occurs, and it results in non-

overlapping daily analysis periods. Before 9 June 2009,

WRF version 2.2 was used with a domain encompassing

most of the United States except for portions of the west

(Fig. 1a). After 9 June 2009, the domainwas expanded to

encompass the entire CONUS and the model version

was updated to version 3.1.1. Other model specifications

during the 3-yr analysis period were unchanged. Physics

parameterizations are listed in Table 1. Initial conditions

(ICs) and lateral boundary conditions (LBCs; 3-h up-

dates) are from National Centers for Environmental

Prediction’s (NCEP)NorthAmericanMesoscale (NAM;

Rogers et al. 2009) model. The 3D object algorithm is

applied over a masked subregion of the NSSL-WRF

domain (Fig. 1a), which was chosen so that mostly

land areas within the United States away from the lat-

eral boundaries and covered by the Next Generation

Weather Radar (NEXRAD) network were included.

Ensemble forecasts examined were from the Storm

Scale Ensemble Forecast (SSEF) system run by the

Center for Analysis and Prediction of Storms (CAPS)

for the 2010 NOAAHazardous Weather Testbed Spring

Forecasting Experiment (Xue et al. 2010; Clark et al.

2012). During 2010, the SSEF system had 26 members

with 4-km grid spacing that were initialized on weekdays

at 0000 UTC and integrated 30 h over a CONUS do-

main (Fig. 1a) from late April to mid-June. The 3D

object algorithm is applied to forecast hours 13–30,

corresponding to the 18-h period 1200–0600 UTC. The

WRF-ARW was used for 19 SSEF members, the Non-

hydrostatic Mesoscale Model (NMM; Rogers et al.

2009) dynamic core was used for 5 members, and the

Advanced Regional Prediction System (ARPS; Xue

et al. 2003) was used for 2 members. In this study, a 14-

member subset of the ensemble comprising the ARW

and NMM control members and members with varied

physics and perturbed ICs/LBCs are examined.2 En-

semble specifications for these members are provided in

Table 1 and further details on all members can be found

in Xue et al. (2010). ICs and LBCs (3-h updates) for the

control member were taken from NAM analyses and

forecasts, respectively. Radial velocity and reflectivity

2 ARPS members were not examined because hourly maximum

UH was not an available diagnostic from these members.
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data from up to 140 Weather Surveillance Radar-1988

Doppler (WSR-88D) and other high-resolution obser-

vations were assimilated into the ICs using the ARPS

three-dimensional variational data assimilation (3DVAR;

Xue et al. 2003; Gao et al. 2004) data and cloud analysis

(Xue et al. 2003;Hu et al. 2006; Xue et al. 2008) system. IC

perturbations were derived from evolved (through 3 h)

perturbations of 2100 UTC initialized members of

NCEP’s Short-Range Ensemble Forecast (SREF) system

(Du et al. 2006) and added to the control member ICs.

For each perturbed member, the SREFmember used for

the IC perturbations was also used for the LBCs.

Tornado reports, as compiled in the National Climatic

Data Center (NCDC) publication Storm Data, were

obtained from the SPC web site (http://www.spc.noaa.

gov/wcm/). Known deficiencies in Storm Data include

inconsistency in reporting practices among County

Warning Areas and population-dependent reporting

density (Weiss and Vescio 1998; Gallus et al. 2008 and

references therein).

The 3D object algorithm is applied to the raw UH

fields (i.e., no smoothing) for UH thresholds of 50, 75,

100, 125, and 150 m2 s22. These thresholds were chosen

based on typical ranges of UH observed from daily ex-

aminations of the NSSL-WRF forecasts. The identifi-

cation criteria are very simple: the objects must contain

at least five contiguous grid points in space and/or time.

Smoothing is undesirable because UH swaths or tracks

are very finescale features with high amplitudes and

sharp gradients. Smoothing, especially when multiple

swaths are closely spaced, can result in unwanted merging

of individual tracks. Note, even without smoothing, merg-

ing can occur for closely spaced tracks.

A different type of problem occurs for splitting or

merging rotating storms that result in a single UH track

that branches into multiple cases, or multiple UH tracks

that merge into one. When splitting or merging occurs,

all branches get lumped into one 3D object, so there is

not a decision process by which a particular branch is

chosen, as is the case for other more sophisticated radar

storm tracking algorithms [e.g., Thunderstorm Identifi-

cation, Tracking, Analysis, and Nowcasting (TITAN);

Dixon and Wiener (1993); Han (2009)]. Not accounting

for splits and/or mergers should result in an under-

estimation of total UH track lengths. However, based on

subjective examinations of the UH forecasts, merging

and/or splitting rarely occurs at the higher thresholds

examined (e.g., UH $ 100 m2 s22). Because these high

thresholdsmost reliably predict total tornado pathlengths

(discussed later), merging likely does not significantly

impact the more important results. Furthermore, sys-

tematic underestimation of UH pathlengths should

not affect the correlation of UH track lengths to tor-

nado track lengths, which is the focus of subsequent

analyses.

To compute the length of UH objects, the objects are

divided into segments according to each forecast hour

they were present. The latitude–longitude coordinates

FIG. 1. (a) Model domains for NSSL-WRF before and after 9 Jun 2009, and the domain for the 2011 CAPS SSEF

system. The gray-shaded region is the mask over which all analyses were conducted. A legend is provided at the top.

(b) Example of selected UH objects (minimum threshold of 75 m2 s22) identified by the 3D object algorithm for

NSSL-WRF initialized at 0000UTC 15Mar 2008. The red triangles indicate the start and end points of each object as

identified by the algorithm. The number to the left of each object denotes the order in which the object was identified

by the algorithm; corresponding statistics for each object are provided in the top left. The LEN column is the length

between the start and end point of each object; TIME1 and TIME2 are the first and last forecast hours, respectively,

in which the object was present.
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for the beginning and end points of each segment are

found by searching for the farthest west and farthest east

grid points within each segment. Then, the total object

length is found by summing the lengths of the segments

[computed using the haversine formula (Sinnott 1984)—

a common geometric method for calculating distances].

A subjective examination of the beginning and end

points identified by the algorithm found that it appeared

to work very well, which is likely related to UH objects

typically having very large aspect ratios (i.e., they are

very long and skinny). Figure 1b illustrates a case for

which the algorithm was applied using a threshold of

75 m2 s22.

3. Results

a. Example deterministic forecasts: NSSL-WRF

For usefulness as a forecasting tool, information on

the number, length, and maximum intensity of UH ob-

jects should be presented in a way that quickly and in-

tuitively conveys the key object attributes. Figure 2

graphically presents information on forecast UH objects

in such a manner (see Fig. 2 caption for details). NSSL-

WRF forecasts are shown for five cases in which

relatively long total UH pathlengths were present, but

the corresponding total tornado pathlengths were highly

variable. For example, on 5 February 2008 (Fig. 2a),

UH. 75 m2 s22 worked best for predicting total tornado

pathlength; on 23 May 2008 (Fig. 2b), UH . 100 m2 s22

worked best; on 5 June 2010 (Fig. 2c), UH . 125 m2 s22

worked best; and for 7 June 2010 (Fig. 2d) and 15 June

2009 (Fig. 2e), all UH thresholds overpredicted total

tornado pathlength, as only a few tornadoes with short

pathlengths occurred on these two days. Generally, total

UH pathlengths decrease quite rapidly with increasing

UH threshold, and the longer UH tracks have stronger

maximum values of UH.

According to various criteria (e.g., Edwards et al.

2004), the three cases in Figs. 2a–c could be classified as

tornado outbreaks; on each of these days at least one

violent tornado (i.e., enhanced Fujita scale rating $

EF4) occurred and total tornado track lengths were

greater than 350 km. The 5 February 2008 case, popu-

larly known as the ‘‘Super Tuesday’’ outbreak, had the

longest total tornado track length within the analysis

period (1032 km). The 23 May 2008 case had the sec-

ond longest, and the 5 June 2010 case was in the top

20. For each of these outbreaks, forecast UH tracks

TABLE 1. SSEF system and NSSL-WRF configurations. All SSEF system WRF members used version 3.1.1, while NSSL-WRF used

version 3.1.1 (2.2) after (before) 9 Jun 2009. Here, NAMa and NAMf refer to the NAM analysis and forecast, respectively. The 12- and

40-km NAM grids were used in the SSEF system and NSSL-WRF, respectively. ARPS 3DVAR and cloud analysis is referred to by

ARPSa. Elements in the ICs column followed by a plus (1) or minus (2) indicate SREF member perturbations added to the control

member ICs. Boundary layer schemes included MYJ (Mellor and Yamada 1982; Janji�c 2002), YSU (Noh et al. 2003), MYNN (Nakanishi

2000, 2001; Nakanishi andNiino 2004, 2006), andQNSE (Sukoriansky et al. 2006).Microphysics schemes includedThompson et al. (2004),

WRF single-moment six-class (WSM-6;Hong and Lim 2006),WRF double-moment six-class (WDM-6; Lim andHong 2010), Ferrier et al.

(2002), Purdue Lin (Chen and Sun 2002 and references therein), and Morrison et al. (2005). Radiation schemes included the Rapid

Radiative Transfer Model (RRTM; Mlawer et al. 1997), Dudhia (1989), and Geophysical Fluid Dynamics Laboratory (GFDL; Lacis and

Hansen 1974) short wave, and Goddard (Chou and Suarez 1994), RRTM (Mlawer et al. 1997), GFDL (Fels and Schwarzkopf 1975;

Schwarzkopf and Fels 1991), and Dudhia (1989) long wave. Land surface models included Noah (Chen and Dudhia 2001), and Rapid

Update Cycle (RUC; Smirnova et al. 1997, 2000) options.

Ensemble

member ICs LBCs

Radar

data Microphysics

Shortwave

radiation

Longwave

radiation

Land surface

model

Boundary

layer

1) arw_cn 00Z ARPSa 00Z NAMf Yes Thompson Goddard RRTM Noah MYJ

2) arw_m6 1 em-p1_pert em-p1 Yes Morrison Goddard RRTM RUC YSU

3) arw_m7 1 em-p2_pert em-p2 Yes Thompson Goddard RRTM Noah QNSE

4) arw_m8 2 nmm-p1_pert nmm-p1 Yes WSM6 Goddard RRTM RUC QNSE

5) arw_m9 1 nmm-p2_pert nmm-p2 Yes WDM6 Goddard RRTM Noah MYNN

6) arw_m10 1 rsmSAS-n1_pert rsmSAS-n1 Yes Ferrier Goddard RRTM RUC YSU

7) arw_m11 2 etaKF-n1_pert etaKF-n1 Yes Ferrier Goddard RRTM Noah YSU

8) arw_m12 1 etaKF-p1_pert etaKF-p1 Yes WDM6 Goddard RRTM RUC QNSE

9) arw_m13 2 etaBMJ-n1_pert etaBMJ-n1 Yes WSM6 Goddard RRTM Noah MYNN

10) arw_m14 1 etaBMJ-p1_pert etaBMJ-p1 Yes Thompson Goddard RRTM RUC MYNN

11) nmm_cn 00Z ARPSa 00Z NAMf Yes Ferrier GFDL GFDL Noah MYJ

12) nmm_m3 1 nmm-n1_pert nmm-n1 Yes Thompson RRTM Dudhia Noah MYJ

13) nmm_m4 1 nmm-n2_pert nmm-n2 Yes WSM6 RRTM Dudhia RUC MYJ

14) nmm_m5 1 em-n1_pert em-n1 Yes Ferrier GFDL GFDL RUC MYJ

NSSL-WRF configuration

NSSL-WRF 00Z NAMa 00Z NAMf No WSM6 Dudhia RRTM Noah MYJ

(40-km) (40-km)
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FIG. 2. (a) Maximum UH forecast by NSSL-WRF initialized at 0000 UTC 5 Feb 2008 for forecast hours 13–36

(valid 1200–1200 UTC 5–6 Feb). Tornado reports (red triangles) for the corresponding time period are overlaid.

Right panel shows total length of UH objects for each threshold. The length of the individual bars composing each

column indicates the length of the individual UH objects sorted shortest to longest and color coded according to the

maximum intensity of UH in each object. The bars in the bottom column similarly indicate pathlengths and

maximum intensities, but for observed tornadoes where maximum intensities correspond to EF ratings. (b)–(e)

As in (a), butt for forecasts initialized at 0000 UTC on 23 May 2008, 5 Jun 2010, 7 Jun 2010, and 15 Jun 2009,

respectively.
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corresponded very well with the general regions of

observed tornadoes. Additionally, areas of forecast

UH were mainly characterized by long, skinny, and

coherent tracks that would have suggested long-track

mesocyclones.

In contrast to the cases in Figs. 2a–c, those in Figs. 2d,e

were associated with only a few weak tornadoes with

short pathlengths. However, many of the correspond-

ing UH tracks for these cases were very long with rel-

atively intense maximum values. For the 7 June 2010

case (Fig. 2d), inspection of observed composite re-

flectivity data (Fig. 3) revealed that the observed con-

vective mode quickly transitioned from discrete cells

(some supercellular) to a strong linear mesoscale con-

vective system (MCS). Consistent with this quick tran-

sition to a linear convective mode, reported severe

hazards transitioned from mainly large hail and a few

tornadoes to high winds (Fig. 3). Although not obvious

from theUHobject attributes (rhs of Fig. 2d), the spatial

plots of UH reveal a clear difference in the character

of the forecast UH. Specifically, the westernmost tracks

(e.g., southeast Wyoming–western Nebraska in Fig. 2d)

tend to be long and coherent, whereas the easternmost

tracks (e.g., southeast Nebraska in Fig. 2d) are more

diffuse without the more intense maximum UH values.

NSSL-WRF-simulated composite reflectivity (Fig. 3)

revealed that the transition in UH character reflected

a transition in simulated convective mode from strong

isolated cells to a linear MCS, quite accurately reflecting

the observed evolution of convective mode. In this case,

the easternmost UH tracks associated with the simu-

lated MCS were likely not indicative of strong rotation;

rather, these areas of UH probably reflected strongly

sheared updrafts, a characteristic feature of linear sys-

tems like squall lines. Sobash et al. (2011) also discussed

how relatively high values of UH can be generated by

linear convective systems; however, for their purposes,

association of high UH with such systems was beneficial

because they used UH not only as a surrogate for tor-

nadoes, but also for wind and hail—hazards commonly

associated with linear systems. For this study, which

focuses on tornadoes, the 7 June 2010 case illustrates

that further work is needed tomore reliably discriminate

between specific types of potential severe weather

threats. For example, development of methods to dis-

tinguish UH tracks produced by simulated phenomena

that typically produce tornadoes (i.e., supercells) versus

those that do not (i.e., MCSs) would clearly be useful.

Finally, similar to Fig. 2d, the westernmost UH tracks

in Nebraska–Kansas–Oklahoma for the 15 June 2009

case (Fig. 2e) were long and coherent whereas the east-

ernmost UH swath in southern Missouri was more dif-

fuse. However, unlike 7 June 2010, when the convective

evolution was very well forecast, NSSL-WRF forecasts

for 15 June 2009 featured a spurious morning MCS that

produced the UH swath in southern Missouri. In

addition, the long UH tracks in Kansas and northern

Oklahoma, some of which contained very intense

maximum values, would have indicated intense/long-

track mesocyclones, which did not actually occur.

In summary, these examples illustrate the variety of

solutions that can be obtained for different cases when

using total UH pathlength to predict total tornado

pathlength. Clearly, in some cases, the spatial UH plots

as well as the diagrams of object attributes would have

provided useful information; in one case they would

have been a ‘‘false alarm’’ even though convective evo-

lution was well forecast, and in another case they would

have been a false alarm because the convective evolution

was poorly forecast. In the following section, a more ro-

bust statistical analysis is presented using the entire da-

taset to derive the relationship between forecast UH and

tornado pathlengths.

b. Statistical analysis of NSSL-WRF deterministic
forecasts

To compare general characteristics of the total fore-

cast UH and tornado pathlength climatology for the 3-yr

analysis period, Fig. 4 shows frequency histograms, time

series, and daily pathlengths ordered from shortest to

longest (see Fig. 4 caption for more details). The char-

acteristics of the distribution of total UH pathlengths

computed using the highest UH thresholds—125 and

150 m2 s22 (Figs. 4e and 4f, respectively)—most closely

matches that of the total tornado pathlengths. Using the

lower UH thresholds (Figs. 4b–d), pathlengths are

generally longer and the longer pathlengths occur more

frequently so that the frequency distributions are not as

right skewed as for total tornado pathlengths. In addi-

tion, comparing the time series of daily UH and tornado

pathlengths (top inside plot in Fig. 4) reveals that the

longest UH pathlengths tend to occur during June and

later, while for tornadoes the longest pathlengths gen-

erally occur before June.

The tendency for longer UH pathlengths to occur

after June is very clearly seen from themonthly averages

of forecast UH pathlengths compared to pathlengths of

tornadoes (Fig. 5a). During March–May, the increase in

average UH pathlengths follows the increase in average

tornado pathlengths, with the 125 m2 s22 UH threshold

matching tornadoes most closely. However, average

tornado pathlengths decrease in June from their peak in

May, while forecast UH pathlengths increase sharply

from May to June. In fact, even the highest UH

threshold examined (150 m2 s22) overpredicts the av-

erage tornado pathlengths during June and July. It is
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FIG. 3. NSSL-WRF-simulated composite reflectivity (shaded) for forecasts initialized at 0000 UTC 7 Jun 2010, and

corresponding maximum UH (black and red contours for UH greater than 30 and 125 m2 s22, respectively) from

forecast hour 13 to the forecast hour for which the reflectivity images are valid, which includes forecast hours (a) 24,

(c) 27, (e) 30, and (g) 33. Observed composite reflectivity corresponding to forecast hours (b) 24, (d) 27, (f) 30, and

(h) 33. Observed storm reports [legend in top-right of (b)] up to valid time overlaid in all panels.
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FIG. 4. (a) Frequency histogram of total daily tornado pathlengths for the period 2008–10. The top inside plot

shows tornado pathlengths for each day with the pink-shaded regions highlighting the months March–June. The

bottom inside plot shows the daily tornado pathlengths ordered from shortest to longest and a top 10 ranking of the

days with the longest total tornado pathlengths. (b) As in (a), but for UH pathlengths (minimum threshold of

50 m2 s22) identified by the 3D object algorithm. Note, the y axis is scaled differently than in (a). (c)–(f) As in (b), but

for minimumUH thresholds of (c) 75, (d) 100, (e) 125, and (f) 150 m2 s22. Again, note the differently scaled y axes in

the inside plots.
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suspected that UH produced by MCS-related phenom-

enon in NSSL-WRF forecasts may largely explain the

peak forecast UH pathlengths during June. Because

UH is often associated with nontornadic severe weather

(e.g., Sobash et al. 2011), the June peak is consistent with

the climatological peak of observed nontornadic severe

weather in June (e.g., Kelly et al. 1985; Clark et al. 2009).

Further work, beyond the scope of this study, is needed to

verify the cause for such high relative forecast UH path-

lengths during June. Note, for the 3-yr period considered

FIG. 5. (a) Average monthly tornado pathlengths and UH pathlengths for thresholds 100, 125, and 150 m2 s22 over the 3-yr analysis

period. The pink shading highlights the months March–May and the light blue shading highlights June–August. (b) Scatterplot of daily

forecast UH pathlength using the threshold 50 m2 s22 vs the total tornado pathlength for the months March–May. The corresponding

correlation coefficient is shown in the top-right embedded scale along with 95% confidence intervals. (c) As in (b), but for the months

June–August. Rest of panels as in (b),(c), but for UH thresholds of (d),(e) 75, (f),(g) 100, (h),(i) 125, and (j),(k) 150 m2 s22, respectively.
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in this study, February contains a small relative maxima

because the Super Tuesday outbreak 5 February 2008 was

such an extreme outlier.

To examine how strongly daily total UH and tornado

pathlengths were correlated, Pearson correlation co-

efficients were computed for daily pairs of UH and

tornado pathlengths for eachUH threshold (Figs. 5b–k).

The correlation coefficients were computed separately

for the periods March–May and June–August because

these two periods were distinctly different in terms of

the relationship between monthly average UH and

tornado pathlength (Fig. 5a). Furthermore, these two

periods separate spring and summer and cover the

months with the highest climatological tornado fre-

quencies. The 95% confidence intervals for the corre-

lation coefficients are computed using the cor.test(�)
function in the R statistical software package (R De-

velopment Core Team 2011). This function computes an

asymptotic confidence interval based on Fisher’s Z

transform. For testing whether statistically significant

differences exist between various dependent correlation

coefficients, the r.test(�) function is used. This function

follows procedures recommended by Steiger (1980) for

comparing elements of a correlation matrix.

For March–May (Figs. 5b, 5d, 5f, 5h, and 5j), corre-

lation coefficients were between 0.62 and 0.66 for the

five UH thresholds considered. The scatterplots of daily

UH versus tornado pathlengths show that the UH

threshold 150 m2 s22 generally underestimates total tor-

nado pathlengths, whileUH thresholds below 125 m2 s22

generally overestimate them. For June–August (Figs. 5c,

5e, 5g, 5i, and 5k), correlation coefficients are between

0.32 and 0.43. For each UH threshold, the differences in

correlations between March–May and June–August are

highly significant. Thus, forecast UH pathlengths are

a more skillful predictor of tornado pathlengths during

spring compared to summer.

To potentially improve the correlations, a methodwas

devised to distinguishUHproduced by simulated storms

that are likely high based and/or elevated and, thus, have

a lower probability of producing tornadoes (e.g.,

Rasmussen and Blanchard 1998; Grant 1995; Horgan

et al. 2007). For determining whether a UH track is

produced by a high-based storm, the height of the lifting

condensation level (HLCL) computed using surface-

based parcels is used. Using storm proximity soundings,

Rasmussen and Blanchard (1998) found that about 90%

of significant tornadoes [i.e., those rated as category 2

on the enhanced Fujita scale (EF2) and stronger] were

associated with HLCL # 1500 m. Later studies (e.g.,

Thompson et al. 2003) have verified HLCL as a strong

discriminator between tornadic and nontornadic

supercells. To determine an average value of HLCL

associated with UH objects, the average HLCL over all

the grid points within a UH object present during

a particular hour is computed for the previous hour.

Thus, we basically sample the model environment cov-

ered by the UH object 0–1 h before the UH object is

present. Individual hours are considered separately to

allow for simulated storms that transition between high

based and non–high based during their lifetime. A value

of HLCL . 1500 m is used to discriminate high-based

storms. Tracks or portions of tracks associated with

high-based storms based on this criteria are excluded

from the computation of the total UH track length.

To discriminate UH tracks produced by elevated

storms, the ratio of surface-based convective available

potential energy (SBCAPE) to most unstable convec-

tive available potential energy (MUCAPE) is used. If

SBCAPE is much less than MUCAPE, it is assumed

that a stable near-surface layer exists and the effective

storm inflow layer is elevated. This assumption is often

used by SPC forecasters in determining whether con-

vection is likely to be elevated and works quite well

(S. Weiss 2011, personal communication). A value of

SBCAPE/MUCAPE , 0.75 is used to discriminate UH

tracks associated with elevated storms. This value was

chosen somewhat arbitrarily, but appeared to effectively

distinguish environments for a few selected cases with

elevated instability north of warm fronts in which simu-

lated elevated rotating storms were present. The average

SBCAPE/MUCAPE ratio was computed the in sameway

as for HLCL and, similar to HLCL, tracks or portions

of tracks associated with elevated storms are excluded

from the computation of the total UH track length.

To examine whether filtering UH tracks associated

with high-based and/or elevated simulated storms im-

proved the correlation of total UH and tornado track

lengths, the analysis of monthly statistics and correla-

tions in Fig. 5 is repeated in Fig. 6, but the elevated and/

or high-based portions of UH tracks are excluded from

the computation of total UH track lengths. The filter

reduces monthly average UH pathlengths (Fig. 6a), and

results in the UH threshold 100 m2 s22 matching best

with total tornado pathlengths during spring, rather

than 125 m2 s22, which matched best during spring

without the filter (Fig. 5a). Pearson correlation co-

efficients were slightly improved during spring for the

UH thresholds that on average matched best with total

tornado pathlengths: 75, 100, and 125 m2 s22 (Figs. 6d, 6f,

and 6h).However, the improvements in correlationswere

significant (just barely) only for the 125 m2 s22 threshold.

Furthermore, correlations were slightly reduced during

summer (Figs. 6c, 6e, 6g, 6i, and 6k) after applying the

filter, but none of the differences during summer were

significant.
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It is not clear why filtering the UH tracks produced by

high-based and/or elevated simulated storms did not

result in more significant improvements in the relation-

ship with tornado pathlengths. Perhaps NSSL-WRF im-

properly simulated the severe weather environment in

some cases, or perhaps non–supercell storm modes in

environments supportive of surface-based convection

with low HLCLs produced many long UH tracks, which

would not have been filtered out by the algorithm.

Clearly, more detailed analyses are needed to explore

this issue further.

c. Example ensemble forecasts

Similar to deterministic forecasts, for the ensemble

UH object attributes to be useful to forecasters, in-

formation on the key object attributes should be

FIG. 6. As in Fig. 5, but for UH paths associated with elevated and/or high-based storms are not considered.
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presented intuitively for efficient interpretation. For

ensembles, effective graphical displays of object attri-

butes are more challenging because of the extra dimen-

sion (i.e., multiple members) relative to deterministic

forecasts. We present object attributes from each en-

semble member for SSEF system forecasts initialized at

0000 UTC on 10, 19, and 6 May 2011 (Figs. 7, 9, and 10

respectively; see figure captions for details). In addition to

the added dimension of ensemble members, these fig-

ures also distinguish UH tracks produced by high-based

and/or elevated storms according to the criteria outlined

in the previous section. These three cases were chosen

because they depict a range of distinctly different severe

weather events involving rotating storms.

1) 10 MAY 2010

The 10 May 2010 case had the longest total tornado

pathlength during the analysis period for the SSEF sys-

tem (599 km). The synoptic regime reflected a classic

pattern for a southern plains tornado outbreak with

a high-amplitude, negatively tilted, midlevel short-wave

trough quickly moving from southwest to northeast over

the region, with an associated sharp dryline arcing from

southwestern Kansas through central Oklahoma and

into west-central Texas (not shown). The strong envi-

ronmental indicators led the SPC to issue a ‘‘high risk’’

for severe weather. Indeed, numerous long-track tor-

nadoes occurred, mainly over central and eastern

Oklahoma, with the strongest rated EF4. In Fig. 7a the

maximum UH from any ensemble member over the

13–30-h forecast period is shown, with different shad-

ing schemes separating UH tracks produced by high-

based and/or elevated storms and observed tornado

locations overlaid. The ensemble UH tracks high-

lighted the main region where tornadoes occurred and

indicated that storms producing UH in this region

would not be high based and/or elevated.

Interestingly, the distribution of UH pathlengths for

this case was bimodal, which was especially apparent for

UH thresholds of 75 m2 s22 and greater (Figs. 7c–f).

One group of members forecast multiple long and in-

tense UH tracks, while another group forecast a few

short and weak UH tracks. The NSSL-WRF forecast for

this case (included in Figs. 7b–f) was similar to the

members with short and weak UH tracks. The members

with the short/weak UH tracks did not produce strong/

long-lived storms within the unstable and strongly

sheared environment most favorable for supercells,

while the members with the long/intense UH tracks did

produce strongly rotating storms in this favorable re-

gion. It is not yet clear why some of the members did not

produce strongly rotating storms. The predicted synop-

tic features were very similar among all the members

with respect to the intensity and location of the dryline

andmidlevel short-wave trough.Additionally, even though

all members depicted a strong elevated mixed layer that

capped surface-based convection during morning and

early afternoon, all members eventually contained large

areas in which the cap had completely eroded by late

afternoon immediately ahead of the dryline.

The boundary layer parameterization seemed to be

the aspect of the ensemble member configurations most

closely related to whether convection initiated. Out of

the eightmembers that did not produce strongly rotating

storms, seven used either the Mellor–Yamada–Janji�c

(MYJ) or quasi-normal scale elimination (QNSE) pa-

rameterization. Note, QNSE defaults to MYJ in un-

stably stratified boundary layers; thus, QNSE can be

largely considered ‘‘MYJ driven.’’ Out of the six mem-

bers that did produce strongly rotating storms, five

used either the Mellor–Yamada Nakanishi and Niino

(MYNN) or Yonsei University (YSU) schemes. Over-

laying 2000 UTC forecast soundings for the point 358N,

2978Wwith a Verification of the Origins of Rotation in

Tornadoes Experiment (VORTEX2; Wurman et al.

2010) sounding (Fig. 8) taken at the same time and only

a few miles away, clearly shows a systematic difference

in the depiction of the boundary layer between these

two sets of members. The MYJ/QNSE members have

boundary layers too cool and shallow relative to the

observations, while the MYNN/YSU members have

boundary layers that are generally deeper and warmer

than the MYJ/QNSE members.3 It is not clear how (or

even if) the different boundary layer characteristics

were that determined whether convection initiated, but

the large differences are rather striking. Further work

is planned to address the characteristics of different

boundary layer schemes in convection-allowing simu-

lations, but it is beyond the scope of this study.

For the members that produced strongly rotating

storms, the total pathlength of tornadoes for this event

matched very well with the portion of total UH path-

lengths that were not elevated/high based using the UH

threshold of 100 m2 s22 (red shaded portion of bars

in Fig. 7d). This correspondence was encouraging be-

cause the 100 m2 s22 threshold was, on average, the most

reliable predictor of total tornado pathlengths for NSSL-

WRF during spring (Fig. 6a). The uncertainty infor-

mation inherent in the ensemble would have suggested

3 The IC–LBC perturbations and land surface models also con-

tribute to differences in the boundary layer structure, but the sys-

tematic differences appear to emanate from the PBL schemes. This

systematic influence is supported by an analysis of four SSEF

members with only different PBL schemes (not shown), which

basically mirror the behavior of the different subsets in Fig. 8.

1102 WEATHER AND FORECAST ING VOLUME 27



FIG. 7. (a)MaximumUH from any SSEF systemmember andNSSL-WRF initialized at 0000UTC 10May 2010 for

forecast hours 13–30 (valid 1200–0600 UTC 10–11 May). The red/purple shading scheme is for UH produced by

surface-based storms, while the blue/green shading scheme is forUHproduced by elevated and/or high-based storms.

Tornado reports (gray triangles) for the corresponding period are overlaid. (b) Total length of UH objects for each

SSEFmember using a minimum threshold of 50 m2 s22. The length of the individual colored bars that compose each

column indicate the length of each UH object for each member. The colors within these bars indicate the maximum

value of UH within the corresponding object, with red/pink shades corresponding to objects produced by surfaced-

based storms and green shades to objects produced by elevated and/or high-based storms (color bars provided on

right side). The bars in the bottom column similarly indicate pathlengths and maximum intensities, but for observed

tornadoes where maximum intensities correspond to EF ratings. (c)–(f) As in (b), but for UH thresholds (c) 75,

(d) 100, (e) 125, and (f) 150 m2 s22.
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a strong conditional risk for rotating storms. In other

words, if storms were to be initiated and sustained, they

would have intense rotation and long tracks.

2) 19 MAY 2010

In some ways, the case on 19 May 2010 was similar to

10 May, but with slightly less extreme environmental

conditions for severe weather. Nonetheless, this was also

a case in which the SPC issued a high risk for severe

weather over Oklahoma. The synoptic set up featured a

short-wave trough moving from west to east that helped

to intensify a dryline over western Oklahoma during the

afternoon. Rotating storms formed near and ahead of the

dryline and near a remnant outflow boundary in central

and western Oklahoma. Numerous tornadoes occurred,

but most were relatively weak and short lived. The most

intense were rated EF1 and the total track length was

about 100 km.

The maximum UH from each member during the 13–

30-h forecast period (Fig. 9a) shows a concentrated

region of UH tracks centered over eastern Oklahoma.

Most of the observed tornadoes occurred within this

region, except for a cluster of weak tornadoes in south-

west Kansas associated with the cold-core center of an

upper low. In contrast to 10 May, the distribution of

ensemble UH pathlengths was relatively uniform. For

UH , 100 m2 s22 (Figs. 9b,c), virtually all members pro-

duced UH paths of variable lengths from non-high-based/

nonelevated storms, suggesting rotating surface-based

storms would certainly form and a capping inversion

would not prevent convective initiation. For UH $

100 m2 s22 (Figs. 9d–f), pathlengths were relatively short,

especially compared to thememberswith strongly rotating

storms on 10 May. For the UH threshold of 100 m2 s22

(Fig. 9d), the total tornado pathlength fell within the bot-

tom half of the distribution of ensemble members.

3) 6 MAY 2010

This case featured a west–east-oriented warm front

that developed and gradually lifted northward through-

out the day from northern Oklahoma to central Kansas.

South of the warm front, moisture was relatively limited

and a strong capping inversion above the boundary

layer along with a lack of dynamic forcing for ascent

in the warm sector prevented convection from de-

veloping. North of the warm front in northern Kansas,

a combination of isentropic ascent and height falls from

amidlevel short-wave trough approaching from the west

led to a series of strong elevated supercells and storm

clusters that moved from west to east across northern

Kansas from 0000 to 0600 UTC 7 May. These storms

mainly produced large hail and severe wind gusts and

one brief tornado was reported in eastern Kansas.

The main corridor of severe reports coincided very

well with the maximumUH from any ensemble member

for the 13–30-h forecast period (Fig. 10a). Furthermore,

the object attributes (Figs. 10b–f) indicated that many

of the members contained one or two very long UH

tracks with intense maximum values. However, almost

all of the UH tracks were marked as produced by storms

that were high based and/or elevated, which matched

very well with what actually occurred for this case.

The high-based/elevated nature of the UH tracks would

have strongly reinforced the idea that hail/winds would

be the main severe threats for this case, rather than

tornadoes.

FIG. 8. (a) Forecast SSEF member soundings at 2000 UTC (20-h

forecast) 10 May 2010 for the members that did not produce

strongly rotating storms, and an observed sounding taken for

VORTEX2 at the corresponding time just a fewmiles away. (b) As

in (a), but for the SSEFmembers that did produce strongly rotating

storms. Locations for the observed and forecasts soundings are

35.4358N, 297.0018W and 35.0008N, 297.0008W, respectively, in

central OK.
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In summary, the ensemble UH track attributes pro-

vided unique information for each highlighted case. For

10 May, a strong conditional risk for severe weather was

suggested for strong/long-track surface-based rotating

storms; for 19 May, high certainty was implied, with

most members suggesting relatively short tracks for

surface-based rotating storms; and for 6 May 2010, the

ensemble implied high certainty for intense/long-track

rotating elevated storms. In the following section, a

statistical analysis is presented covering all days during

2010 when the SSEF system was run.

d. Statistical analysis of 2010 SSEF system forecasts

Average dailyUHpathlengths over all 34 cases during

2010 are computed for the mean of ARW and NMM

members, as well as NSSL-WRF (Fig. 11a). For each

threshold, the ARWmembers have the longest average

UH pathlengths. The NSSL-WRF falls within the lower

FIG. 9. As in Fig. 7, but for forecasts initialized at 0000 UTC 19 May 2010.
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range of ARW SSEF members (not shown), which is

expected because NSSL-WRF also uses the ARW dy-

namics core. The NMM members have average path-

lengths about half as long as the ARW members. After

filtering out high-based and/or elevated storms, average

pathlengths for ARW SSEF members and NSSL-WRF

decrease by about 50%. The percent decrease for NMM

members after applying the filter is less than for the

ARW members, especially for UH $ 100 m2 s22.

Similar to the NSSL-WRF climatology for March–May,

the average filtered UH pathlengths for SSEF ARW

members match the average tornado pathlengths most

closely using a UH threshold of 100 m2 s22.

To examine the relationship between ensemble UH

and tornado pathlengths, Pearson correlation coeffi-

cients are computed (Figs. 11b–k). The NMM members

are excluded from these analyses because they actually

have a negative impact on the ensemble correlations

FIG. 10. As in Fig. 7, but for forecast initialized at 0000 UTC 6 May 2010.
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FIG. 11. (a) Average daily UH pathlengths for 50, 75, 100, 125, and 150 m2 s22 thresholds from the NSSL-WRF (red/orange bars), and

means of the SSEF system ARW members (green bars) and NMM members (blue bars). Average tornado pathlengths are indicated by

the black histogram bars. The averages cover the 34 cases duringApril–June 2010 for which the SSEF system forecasts were available. For

each model or group of models, the total height of each histogram bar includes portions of UH tracks identified as high based and/or

elevated, while the height of the dark-colored bars does not. (b) Scatterplot of daily forecast UH pathlength using the 50 m2 s22 threshold

vs total tornado pathlength for all 34 cases covered by the SSEF system forecasts. Points are included for individual ARWSSEFmembers,

the mean of the ARW members, and NSSL-WRF. A legend is provided in the bottom right. Corresponding correlation coefficients are

shown in the top-right embedded scale along with 95% confidence intervals. (c) As in (b), but for UHpathlengths where portions of tracks

high-based and/or elevated are excluded. Rest of panels as in (b),(c), but for UH thresholds of (d),(e) 75, (f),(g) 100, (h),(i) 125, and (j),(k)

150 m2 s22, respectively.
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(not shown).4 Correlations are computed by considering

each pair of ensemble member–observation values (e.g.,

for 34 cases and 10 ARW ensemble members, 343 105
340 observation–model pairs of values are used). Corre-

lations are also computed using ensemble mean UH

pathlength, resulting in one pair of observation–model

values for each case, and for the NSSL-WRF forecasts

that cover the same 34 cases (Figs. 11b–k). The results are

presented separately for totalUHpathlengths (top row of

panels), and UH pathlengths computed after filtering out

track segments from high-based and/or elevated storms

(bottom row of panels).

For eachUH threshold, the ensemblemean correlation

with total tornado pathlengths is higher than that com-

puted using each ensemble member–observation pair.

For example, at the 125 m2 s22 UH threshold (Fig. 11h),

the ensemble correlation is 0.20 while the ensemblemean

correlation is 0.29. The improvement of the ensemble

mean correlation over that of the ensemble is more dra-

matic after filtering high-based and/or elevated portions

ofUH track segments. Again, considering the 125 m2 s22

UH threshold (Fig. 11i), the ensemble correlation is 0.37

while the ensemble mean correlation is 0.58. The im-

provement from using the ensemble mean is reassuring

and implies that more uncertain aspects of the ensemble

member forecasts are being ‘‘filtered out’’ by taking the

mean (e.g., Kalnay 2003).

Additional improvements in correlation with total

tornado pathlengths, especially for the ensemble mean,

are achieved through filtering out the high-based/

elevated portions of UH track segments. For example,

after filtering high-based/elevated UH track segments

using the 125 m2 s22 threshold, ensemble mean corre-

lations improve from 0.29 to 0.58 (Figs. 11h,i). The dif-

ferences between the ensemble mean filtered versus

nonfiltered correlations were significant for UH thresh-

olds . 50 m2 s22. The UH versus tornado pathlength

scatterplots for total and filtered UH pathlengths sug-

gest that the improvement in correlation for the filtered

UH pathlengths results from a downward shift in the

location of points in the far-left portion of the scatter-

plots. In other words, for the cases in which the total

tornado pathlengths were very short but many of the

members forecast long UH pathlengths, the forecast

UH pathlengths were dramatically reduced by filtering

out the tracks from high-based/elevated storms.

Another notable result is the apparent poor relative

performance of NSSL-WRF. Even after filtering UH

track segments from high-based/elevated storms, the

NSSL-WRF correlations were very low, ranging from

0.01 to 0.22 for the different thresholds examined. For

the filtered UH track segments, the ensemble mean

correlations were higher with statistical significance than

NSSL-WRF for each threshold examined except

50 m2 s22. Compared to the correlations from the much

larger set of NSSL-WRF cases examined in section 3b,

these correlations are very low, so it is clear that this

particular set of cases was not representative of typical

NSSL-WRF performance. Furthermore, because the set

of cases for which the SSEF system was run is relatively

small and covers only a few days with very long tornado

pathlengths, a bad forecast for one of the long tornado

pathlength days could have a large negative impact on

the overall correlations. Indeed, for the tornado out-

break on 10 May 2010, which had a total tornado path-

length of 599 km, NSSL-WRF had a total UH pathlength

near zero for the 125 m2 s22 UH threshold. Similarly, for

the case with the third highest total tornado pathlength

(30 April 2010), the NSSL-WRF UH pathlengths were

very short. For both of these cases, NSSL-WRF UH

pathlengths were within the range of SSEF ARW mem-

bers, but near the lower end of the distribution. Fur-

thermore, there were two or three (depending on the

threshold examined) ARW SSEF members with lower

overall correlations than NSSL-WRF (not shown). Thus,

the poor relative performance of NSSL-WRF should

be interpreted with caution and is more of an indication

of the advantages of using the ensemble.

Because the analyses of deterministic forecasts from

NSSL-WRF found significant differences in the relation-

ship between total UH and tornado pathlength for the

March–May period compared to June–August, the anal-

ysis for the ensemble is repeated including only theApril–

May cases and excluding the 14 June cases (Fig. 12). The

comparisons of average daily UH pathlengths for the

different sets of members (Fig. 12a) yielded results sim-

ilar to those including all cases.However, the correlations

for the ensemble and ensemble mean were much higher

for only the April–May cases, and the differences were

more dramatic after filtering theUH track segments from

high-based/elevated storms. For example, for total UH

pathlengths at the 100 m2 s22 UH threshold, ensemble

mean correlations were 0.28 (Fig. 11f) and improved to

0.46 after excluding June cases (Fig. 12f). For the filtered

UH pathlengths at the same threshold, ensemble mean

correlations were 0.58 (Fig. 11g) and improved to 0.84

after excluding June cases (Fig. 12g). For the set of cases

excluding June, the ensemble mean correlations were

surprisingly high—up to 0.91 using the filtered UH track

4 The negative impact is likely at least partially a result of sys-

tematic differences in average UH pathlengths (Fig. 11a). How-

ever, examination of ARW and NMM members separately also

revealed that NMMmembers tended to have weaker correlation to

tornado pathlengths.
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lengths for the 150 m2 s22 threshold. These results

suggest the ensemble mean UH pathlengths could po-

tentially be a very skillful predictor for the overall se-

verity of a tornado outbreak as measured by the total

tornado pathlength. Certainly, it will be desirable to

verify these results with a much larger set of cases.

4. Summary and conclusions

A 3D object identification algorithm is used to mea-

sure the track length of simulated rotating storms in

convection-allowing forecast models. Simulated rota-

tion is quantified in terms of hourly maximum updraft

FIG. 12. As in Fig. 11, but only for the 20 cases covered by SSEF system forecasts during April andMay 2010 (i.e., the 14 cases in June are

excluded).
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helicity (UH), and various UH thresholds are used to

identify objects. Inclusion of the time dimension in the

object algorithm allows tracks to span multiple forecast

hours and encompass entire life cycles of simulated ro-

tating storms. Methods for visualizing UH object attri-

butes from the convection-allowing forecasts that quickly

convey useful information to forecasters are presented.

In addition, the relationship of total UH track length to

total tornado pathlengths over 24-h periods is docu-

mented using Pearson correlation coefficients. Deter-

ministic UH forecasts from a 4-km grid-spacing version

of the WRF-ARW (NSSL-WRF) for the time period

2008–10 are examined, as are ensemble UH forecasts

from the SSEF system run by CAPS for the 2010

NOAA Hazardous Weather Testbed Spring Forecast-

ing Experiment.

Analysis of NSSL-WRF forecasts during 2008–10 re-

vealed significant differences in the strength of the re-

lationship between total UH and tornado pathlengths

during spring (March–May) compared to summer

(June–August), with the relationship during spring

being much stronger. To improve the correlations,

a method was devised to filter out segments of UH

tracks likely produced by simulated storms that are high

based and/or elevated, with the idea that these storms

would be unlikely to produce tornadoes. For the deter-

ministic forecasts during spring, this filter slightly im-

proved the correlations with only one UH threshold

having significantly different correlations relative to the

nonfiltered UH tracks. For the summer, applying the

filter did not result in any significant differences.

For the ensemble, three cases were highlighted that

illustrate some of the potentially useful information

provided by forecast object attributes. For the 10 May

2010 case, a bimodal distribution of total UH path-

lengths implied a conditional risk for a tornado outbreak

(i.e., if storms formed, they would be long track and

strongly rotating); for 19 May 2010, the distribution of

total UH pathlengths was quite uniform, indicating

a high degree of certainty that there would be rotating

storms, but the pathlengths were fairly short; and for

6 May 2010 there was a high degree of certainty for

long-track strongly rotating, but elevated storms. Each

of these cases verified very well.

For the statistical analyses covering all 34 ensemble

cases in 2010, the correlations with total tornado tracks

lengths computed using the ensemble mean improved

over correlations computed using each ensemble mem-

ber. Additionally, in contrast to the analysis of deter-

ministic forecasts, filtering out high-based/elevated

storms significantly improved the correlations. Consis-

tent with the results from the deterministic forecasts,

inclusion of the 14 cases from June in the ensemble

analyses was found to negatively impact the correlations.

The best results were obtained for the April–May cases

after filtering out UH paths from high-based/elevated

simulated storms. Pearson correlation coefficients of

the ensemble mean UH pathlengths with total tornado

pathlengths were as high as 0.91 for these cases.

These results are very encouraging and illustrate the

potential usefulness of 3D object identification algo-

rithms within a forecasting context. However, more

analyses of a much larger sample of cases are needed

to verify some of the very high correlations that were

obtained from the ensemble. Furthermore, it is ac-

knowledged that the UH pathlength versus tornado

comparisons are not ‘‘apples to apples.’’ Ideally, UH

paths would be verified against observed mesocyclone

paths, because not all rotating storms produce torna-

does. It is possible that the discrepancy in datasets ex-

plains the dropoff in the strength of the relationship

between total UH pathlength and total tornado path-

length during summer—perhaps the summer months

truly do have more storms that produce longer average

rotation tracks—but the storms do not produce torna-

does as efficiently as springtime storms. Work is on

going at NSSL to develop a product for verifying me-

socyclone paths using the Vortex Detection and Di-

agnosis Algorithm (VDDA) within the NSSL WDSS-II

software package (Lakshmanan 2002).

Future work will involve testing the displays of 3D

object attributes during NOAA/HWT Spring Fore-

casting Experiments, as well as warn-on-forecast appli-

cations. We also plan to extend the application of 3D

object algorithms to other diagnostics like hourly max-

imum vertically integrated graupel to document the

relationship with observed hail swaths. In addition, be-

cause the 3D algorithm incorporates time, it is ideally

suited for diagnosing convective initiation timing, which

is becoming an emphasis in forthcoming NOAA/HWT

Spring Forecasting Experiments.
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