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Abstract 

To use reflectivity data from X-band radars for quantitative precipitation 

estimation and storm-scale data assimilation, the effect of attenuation must be properly 

accounted for. Traditional approaches try to make correction to the attenuated 

reflectivity first before using the data. An alternative, theoretically more attractive 

approach builds the attenuation effect into the reflectivity observation operator of a data 

assimilation system, such as an ensemble Kalman filter (EnKF), allowing direct 

assimilation of the attenuated reflectivity and taking advantage of microphysical state 

estimation using EnKF methods for a potentially more accurate solution. 

This study first tests the approach for the CASA (Center for Collaborative 

Adaptive Sensing of the Atmosphere) X-band radar network configuration through 

observing system simulation experiments (OSSE) for a quasi-linear convective system 

(QLCS) that has more significant attenuation than isolated storms. To avoid the 

problem of potentially giving too much weight to fully attenuated reflectivity, an 

analytical, echo-intensity-dependent model for the observation error (AEM) is 

developed and is found to improve the performance of the filter. By building the 

attenuation into the forward observation operator and combining it with the application 

of AEM, the assimilation of attenuated CASA observations is able to produce a 

reasonably accurate analysis of the QLCS inside CASA radar network coverage. 

Compared with foregoing assimilation of radar data with weak radar reflectivity or 

assimilating only radial velocity data, our method can suppress the growth of spurious 

echoes while obtaining a more accurate analysis in the terms of root-mean-square 

(RMS) error. Sensitivity experiments are designed to examine the effectiveness of AEM 
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by introducing multiple sources of observation errors into the simulated observations. 

The performance of such an approach in the presence of resolution-induced model error 

is also evaluated and good results are obtained.  

The same EnKF framework with attenuation correction is used to test different 

possible configurations of 2 hypothetical radars added to the existing network of 4 

CASA radars through OSSEs. Though plans to expand the CASA radar network did not 

materialize, such experiments can provide guidance in the site selection of future X-

band or other short-wavelength radar networks, as well as examining the benefit of X-

band radar networks that consist of a much larger number of radars. Two QLCSs with 

different propagation speeds are generated and serve as the truth for our OSSEs. 

Assimilation and forecast results are compared among the OSSEs, assimilating only X-

band or short-wavelength radar data.  Overall, radar networks with larger downstream 

spatial coverage tend to provide overall the best analyses and 1-hour forecasts. The best 

analyses and forecasts of convective scale structure, however, are obtained when Dual- 

or Multi-Doppler coverage is preferred, even at the expense of minor loss in spatial 

coverage. 

Built-in attenuation correction is then applied, for the first time, to a real case 

(the 24 May 2011 tornadic storm near Chickasha, Oklahoma), using data from the X-

band CASA radars. The attenuation correction procedure is found to be very effectiveð

the analyses obtained using attenuated data are better than those obtained using pre-

corrected data when all the values of reflectivity observations are assimilated. The 

effectiveness of the procedure is further examined by comparing the deterministic and 

ensemble forecasts started from the analysis of each experiment. The deterministic 
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forecast experiment results indicate that assimilating un-corrected observations directly 

actually retains some information that might be lost in the pre-corrected CASA 

observations by forecasting a longer-lasting trailing line, similar to that observed in 

WSR-88D data. In the ensemble forecasts, assimilating un-corrected observations 

directly, using our attenuation-correcting EnKF, results in a forecast with a more intense 

tornado track than the experiment that assimilates all values of pre-corrected CASA 

data.  

This work is the first to assimilate attenuated observations from a radar network 

in OSSEs, as well as the first attempt to directly assimilate real, uncorrected CASA data 

into a numerical weather prediction (NWP) model using EnKF. 



1 

Chapter 1: Introduction  

1.1 Background and Motivations 

In many areas over the continental United States, the current operational 

Weather Surveillance Radar-1988 Doppler (WSR-88D) radar network lacks an effective 

means of providing dense, comprehensive, lower-troposphere observations. To address 

this shortcoming, the Center for Collaborative Adaptive Sensing of the Atmosphere 

(CASA;McLaughlin et al. 2009) has developed a network low-cost, high-spatial-density, 

adaptively-scanning X-band dual-polarization Doppler radars.  The Doppler and 

polarimetric capabilities of the CASA network, operating at high spatial and temporal 

resolutions, can be used to detect, track, analyze, and predict tornadoes or processes 

leading to tornadogenesis. CASA radars are designed and deployed to operate as a 

network, providing dense, overlapping coverage to overcome the horizon problem 

common to large, long-range radars. This network approach to scanning, known as 

distributed collaborative adaptive sensing (DCAS) (McLaughlin et al. 2009), optimizes 

the low-level volume coverage scanning and maximizes the utility of each scanning 

cycle for users. The data from the first CASA test-bed, known as Integrated Project One 

(IP1, active from 2006 to 2011), are used to drive real-time surface analyses, 

nowcasting, and dynamic numerical weather prediction (NWP) models (Brotzge et al. 

2010). 

Many studies assimilating Doppler radar observations into NWP models have 

shown reasonable success in analyzing and forecasting convective storms (Sun et al. 

1998; Weygandt et al. 2002; Xue et al. 2003; Xiao et al. 2005; Schenkman et al. 2010; 

Schenkman et al. 2011; Snook et al. 2011). Compared to the 3-dimensional variational 
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(3DVAR) and 4-dimensional variational (4DVAR) methods, the ensemble Kalman 

filter (EnKF) has the notable advantage of incorporating flow-dependent error 

covariance information (Evensen 2003), as well as providing a set of ensemble member 

analyses suitable for initializing ensemble forecasts. For convection-resolving NWP, the 

microphysics scheme is one of the most important physical processes and has a 

profound impact on the forecast. Considering the complexity and highly nonlinear 

nature of microphysical processes, the linearization required by 4DVAR in the 

minimization process often encounters difficulties, particularly when ice species are 

involved (Xu 1996). However, the EnKF method, which uses the full nonlinear model 

to propagate the ensemble state, appears to be more attractive (Tong and Xue 2005).  

The impact of attenuation due to precipitation poses an additional challenge for 

accurate quantitative and qualitative interpretation of shorter wavelength X-band radar 

data. To successfully use reflectivity observations from X-band radars for quantitative 

precipitation estimation and storm-scale data assimilation, the effect of attenuation must 

be properly accounted for. As a result, attenuation correction is a significant area of 

research in utilizing reflectivity observations from X-band and other shorter-wavelength 

radars.  Numerous attenuation algorithms have been studied in the observation space, 

and results are promising (Bringi et al. 2001; Gorgucci and Chandrasekar 2005; Park et 

al. 2005a; Park et al. 2005b). Although attenuation can be estimated, and its effects on 

reflectivity and differential reflectivity fields can be compensated for, little can be done 

in cases of complete attenuation where the signal drops to near the noise floor (Snyder 

et al. 2010). 
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More recently, there have been efforts to include attenuation in the forward 

observation operator of the data assimilation system. Attenuation correction can be 

achieved using a variational approach by estimating the attenuation at each range gate 

and iterating this process until an accurate estimate of attenuation is reached (Hogan 

2007); the expected attenuation can also be calculated using the estimated atmospheric 

state, which can be obtained through ensemble-base data assimilation (Xue et al. 2009; 

XTZ09 hereafter). The latter approach, as proposed by XTZ09, does not require any 

prior assumption about the specific hydrometeor types at particular grid points, and it is 

possible to include error or uncertainty from all data sources in the assimilation 

framework, as well as allowing for close coupling of attenuation correction with the 

dynamical model. Such a procedure was demonstrated to be effective in XTZ09 using a 

set of observing system simulation experiments (OSSEs), in which simulated radar 

observations of a supercell were collected using a single simulated radar. This work 

establishes a new direction in dealing with attenuation correction during radar 

reflectivity data assimilation. 

 

1.2 Dissertation Overview 

The primary objective of this work is to test the effectiveness of, and further 

improve, attenuation correction built into an EnKF system, in particular for more 

complex convective storm systems and for observations from CASA-like X-band radar 

networks. For a thorough evaluation, the capability of the EnKF system will be tested in 

OSSEs by assimilating simulated radar observations for QLCSs and in real data 

experiments by assimilating observations collected from the CASA IP1 network during 
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the 24 May 2011 tornado outbreak happened in southwest Oklahoma. The results of 

analyses and subsequent deterministic and ensemble forecasts will be evaluated. 

Chapter 2 contains a brief overview of traditional attenuation algorithms and the 

current attenuation correction methods used by CASA radar network. A detailed 

description of the attenuation-containing forward observation operator used in the 

research as well as an observation error model (OEM) that is designed to improve the 

performance of the EnKF system are included, too. 

In Chapter 3 we describe the truth simulation, observation simulation, and data 

assimilation experiment configurations of the OSSEs. As this is the first study that 

directly assimilates attenuated observations from a radar network for a linear convective 

system, OSSEs are preferred to test the new methodology (Lord et al. 1997). The results 

from perfect and imperfect model experiments are discussed. In the latter, model 

resolution errors are introduced into the OSSEs to examine the robustness of the 

attenuation correction procedure in the presence of model error. The situation where 

multiple error sources present in observations is also examined. Another type of 

observation error model is proposed and examined, too. 

The same EnKF framework with attenuation correction is used in OSSEs to test 

the possible configurations of an expanded CASA IP1 radar network in Chapter 4. 

CASA had previously planned to increase the size of the radar network, positioning the 

added radars in a way that would cover existing blind spots for the most common storm 

modes, especially for cases where severe attenuation happened (Brewster 2005). 

Recently, the CASA Dallas Fort Worth (DFW) Urban Demonstration Network also has 

plan to expand the existing DFW Test-bed (Philips 2012). OSSEs can be an effective 
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way to evaluate trade-offs in the design of observing systems and provide the 

quantitative basis for a rational design of observing systems that will be used primarily 

for numerical weather prediction (Lord et al. 1997). In our OSSEs, the impact of storm 

motion speed is considered by designing experiments with slow-moving and fast-

moving convective lines. The main focus is on evaluating the accuracy of analyses and 

predictions assimilating data collected by radars with different site arrangements. These 

OSSEs can provide guidance to future X-band radar network site selection for the 

purpose of data assimilation or convective storm NWP. 

Tests of the attenuation correction procedure using real observations from the 

CASA IP1 network are discussed in Chapter 5. A brief case description of the 24 May 

2011 tornado outbreak is presented. The experiment set-ups are then introduced, and 

preliminary results are discussed. Comparisons are made between the experiment 

assimilating pre-corrected observations using the original EnKF algorithm (without 

built-in attenuation correction) and one assimilating un-corrected observations using our 

attenuation-correcting EnKF system.  

A summary of the dissertation and outlines of future work are presented in 

Chapter 6. 
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Chapter 2: Historical Review and Description of Techniques 

2.1 Overview of traditional attenuation algorithms 

2.1.1. Existing attenuation algorithms 

Weather radar is one of few remote sensing platforms that can provide high 

spatial and temporal resolution measurements of precipitation in weather systems, 

including convective storms. By sending directional microwave pulses with 

wavelengths of 1 to 10 cm (approximately ten times the diameters of the droplets of 

liquid, ice crystals, snow and graupel particles of interest), Rayleigh or Mie scattering 

occurs and part of the energy of each pulse bounces off of these particles, back in the 

direction of the radar station. Theoretically, shorter wavelengths with superior angular 

resolution are useful for smaller particles.  Shorter wavelength electromagnetic energy, 

however, is more strongly absorbed by water or ice droplets. For example, 3 cm 

wavelength X-band radars suffer echo power loss up to100 times larger than that 

suffered by the 10 cm S-band radars of the WSR-88D radar network (Doviak and Zrnic 

1993). Significant errors can be introduced during quantitative and qualitative 

interpretation of X-band radar data if the effects of attenuation are not considered and 

corrected. 

An electromagnetic wave suffers power loss both from energy absorption and 

scatter. Each hydrometeor absorbs an amount of power PL from the incident power with 

power density Si , that can be expressed as 

PL = (ůa+ůs) Si , (1) 
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where ůa is the absorption cross section, an apparent area that intercepts from the 

incident radiation a power equal to the power dissipated as heat in the drop, and ůs is the 

total scatter cross section. 

 If we use the Born approximation, which neglects the scattering of the scattered 

field, drops within a volume element æV(r) do not significantly alter Si  within this 

volume. The power density change æSi in a wave propagating a short distance ær 

through the volume is  

1
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where the negative sign signifies loss, the summation extends over all N drops within 

æV, and ůan and ůsn are the absorption and scattering cross section, respectively, of the 

nth particle. In the limit ærŸ0, the rate of change in power density is then 

0
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and the power density at any range r is the integral solution of Eq.(3), 
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is the specific attenuation, or the attenuation coefficient. N(D, r ), is the drop size 

distribution (DSD), which is the expected number density of hydrometeors per unit 

diameter. The product N(D, r )dD gives the number of hydrometeors per unit volume 

having diameters in the interval dD about D. The specific attenuation expressed in 

decibels per kilometer is  
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where k has units of m
-1

. 

 It has been observed, for a wide range of rainfall rates and rain types, that a 

consistent relationship exists between specific attenuation of microwaves and the 

rainfall rate measured with rain gauges along the propagation path. Burrows and 

Attwood (1949) have used the drop size data of  Laws and Parsons (1943) to compute a 

power law relation between specific attenuation K and rainfall rate R at various 

wavelengths and temperatures. 

 Existing attenuation correction algorithms include (a) the Hitschfeld and Bordan 

(H-B) solution/algorithm, and its modified versions, for correcting single polarization 

radar reflectivity (Hitschfeld and Bordan 1954), (b) the method based on measurement 

from dual-polarization radar and (c) the networked approach (Lim et al. 2010); the latter 

of these is the approach mainly used by the CASA radars. 

The H-B method uses a reflectivity-attenuation relation to solve for true 

reflectivity from attenuated reflectivity. This relation, as outlined by Hitschfeld and 

Bordan (1954), is numerically unstable and extremely sensitive to calibration errors and 

partial beam blockage. The H-B solution can be made stable by using total path-

integrated attenuation (PIA) as a constraint; such a method has been applied 

successfully to the space/air-borne radar measurement of rain in the TRMM project 

(Meneghini and Kozu 1990) where the PIA is determined using the surface reference 

method. Independent estimates of PIA, however, are not available in general. Also, in 

case with multiple coexisting hydrometeor species, typical attenuation correction 

methods, including that of H-B, usually have difficulties. 
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The specific attenuation-differential phase parameterization method (DP 

method) uses the specific propagation differential phase KDP provided by dual-

polarization weather radars (Bringi et al. 1990; Jameson 1992; Park et al. 2005a). This 

is a more stable approach, whereby specific horizontal and differential attenuation (AH 

and ADP) can be estimated through relations with KDP. The coefficients in the relations 

must be supplied a priori, and they vary as a function of the drop size distribution 

(DSD), temperature, and drop shape relation. 

Testud et al.(2000) constrains the two-way path-integrated horizontal attenuation 

(PIAH )by the total change in ūDP along a radial through a rain cell, termed the ZPHI. 

The attenuation is then apportioned according to the distribution of reflectivity factor at 

horizontal polarization (ZH ) along the radial, making this technique significantly more 

stable than the H-B method. The correction is done either by directly adding to 

reflectivity and differential reflectivity using correction amounts determined from the 

measured differential propagation phase ūDP  (Matrosov et al. 2002; Anagnostou et al. 

2006), or by adjusting coefficients in the attenuation-reflectivity and attenuation-

differential phase relations used in the attenuation correction procedure such that the 

system is self-consistent(Bringi et al. 2001; Park et al. 2005a). 

The pseudo-dual-frequency (PDF) method (Tuttle et al. 1983) estimates PIAH at 

the end of a ray by the dual-wavelength ratio (DWR, defined as the difference between 

the S- and X-band horizontal reflectivity factor at the end of the cell) and apportions 

attenuation similarly to the ZPHI method. The PDF method requires radar data from 

systems operating at two different frequencies and is highly dependent upon the 

assumption of ZH being equal at two wavelengths. 
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2.1.2 Attenuation correction with  CASA radar network  

For the X-band CASA radars, attenuation is corrected in one of two ways: 

(i) Single radar data are corrected using the dual-polarization variable specific 

differential phase (Gorgucci et al. 2005); a self-consistency check is performed between 

Kdp, Zh, Zdr, and specific attenuation or differential attenuation. The estimated Kdp 

profile is then integrated in range to build an estimated profile of differential phase 

(ūDP), and ūDP is iteratively solved to obtain the best match to the observations. The 

initial condition for the iterative solution is obtained from the estimates of the specific 

attenuation profile from the differential phase constraint algorithm. This attenuation 

correction was evaluated and showed good performance in Gorgucci et al. (2006); 

(ii)  Data within multi-Doppler regions can be corrected by processing data from 

multiple radars. The real-time network-based reflectivity retrieval system (NBRR) 

involves collecting data from multiple remote radars and performing digital signal 

processing (Lim et al. 2010). By employing the methodology for reflectivity retrieval in 

a networked radar environment proposed by Chandrasekar and Lim (2008), the NBRR 

system works robustly in real-time while retrieving attenuation-corrected reflectivity. 

While the algorithm CASA used has been shown to accurately retrieve un-

attenuated reflectivity values, it can only do so when the reflected power is above the 

noise floor of the radar receiver. When total signal extinction occurs, the resulting radar 

data cannot be objectively distinguished from true clear-air data. To avoid erroneous 

assimilation of completely attenuated reflectivity data, some studies only assimilate 

radial velocity data. Snook et al. (2011)  assimilates CASA reflectivity and radial 

velocity data only in regions where attenuation-corrected reflectivity exceeds 20 dBZ. 
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Unfortunately, the above constraint prevents the use of CASA clear-air reflectivity data 

for suppressing spurious storms that can develop within the numerical model. Tong and 

Xue (2005)  showed that the assimilation of clear-air reflectivity data is very beneficial 

in suppressing spurious storms. 

 

2.2 Overview of Simultaneous attenuation correction and state estimation 

As the foundation of modern data assimilation for the atmosphere (Daley 1991; 

Kalnay 2002), the optimal estimation theory (Leith 1974) optimally combines different 

sources of information together with their error or uncertainty (usually in the least 

square sense) to obtain the best estimate of the state and/or parameters. Variational 

techniques and the ensemble Kalman filter (EnKF) (Evensen 1994) are advanced data 

assimilation (DA) methods based on optimal estimation theory and have been 

effectively applied to convective-scale model initialization with radar data (Sun et al. 

1994; Snyder et al. 2003; Tong et al. 2005; Hu et al. 2006; Schenkman 2008; Putnam et 

al. 2010). 

 Modern data assimilation techniques such as variational and EnKF approaches 

are able to assimilate observations directly using the forward observation operators that 

link the model state variables to the observations (Kalnay 2002). For weather radars, the 

forward observation operators link the atmospheric state variables, including velocity, 

and hydrometeor species and amount, to the observed radial velocity and reflectivity 

(Xue et al. 2006). Accurate observation operators should take into account radar beam 

propagation (Gao et al. 2006), beam pattern weighting (Xue et al. 2006; Xue et al. 

2007), thermodynamic effects such as bright band effects (Jung et al. 2008b), and 
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attenuation (XTZ09). Additional observational parameters available from polarimetric 

Doppler radars, including differential reflectivity and differential phase measurements, 

provide helpful information about the density, shape, orientation, and drop size 

distributions (Doviak and Zrnic 1993; Gorgucci et al. 2001) and can also be connected 

through forward observation operators (Jung et al. 2008a). 

  With proper observation operators, variational and EnKF methods seek to 

minimize the difference between the observed quantities, which may be attenuated, and 

the model presentation of those quantities, subject to their respective uncertainties. 

Information with a smaller uncertainty will be weighted more heavily in the 

minimization/estimation process, and prior estimate together with its uncertainty 

information can also be readily used. 

2.2.1 Overview of observation operator with attenuation 

 Hogan (2007) estimates rain rate using dual-polarization radar data through the 

variational approach, where attenuation correction is built directly into the forward 

observation operator using explicit treatment of errors, and attenuation is included 

straightforwardly without the instability problem encountered by H-B method. Their 

scheme is tested on S-band radar data and found to be robust and stable, even in the 

presence of differential phase shift on backscatter. However, the retrieval in low-rain-

rate regions has been found to be very sensitive to the calibration of ZDR. With such 

standalone analysis procedures, it is difficult to directly couple rain rate estimation with 

precipitation microphysics employed in numerical models, assuming the model 

microphysics is accurate enough for the model to benefit from such coupling. 
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Because flow-dependent background-error covariance derived from a forecast 

ensemble can be used to óretrieveô unobserved state variables, EnKF is particularly 

useful for radar data assimilation. XTZ09 builds the attenuation effect into the forward 

observation operator of the ARPS EnKF system. The attenuation is calculated based on 

the estimate of atmospheric state, including the hydrometeor species. Such a procedure 

does not require any prior assumption about the specific hydrometeor types at particular 

grid points. It is possible to include error or uncertainty from all sources of information 

in the assimilation framework and allow for a close coupling of the calculation of 

attenuation with the dynamic model. As the model state estimate improves through data 

assimilation, the attenuation estimate also improves. The effectiveness of their 

procedure was demonstrated using a set of observation system simulation experiments 

(OSSEs), in which data from a single X-band radar that covered a supercell storm was 

simulated. 

The observation operator with attenuation proposed by XTZ09 is used in this 

study; it is described below. The equations for reflectivity listed in (Xue et al. 

2006;XTD06 hereafter) and the attenuation calculation introduced in XTZ09 form the 

forward observation operator for radar reflectivity data. These equations are used in 

both radar data simulation and assimilation.  

The measured equivalent reflectivity factor in the presence of attenuation at a 

given range r can be expressed as  

 

   

Ze'(r) = Ze(r)A(r), (6)   

where '( )eZ r  is the attenuated equivalent reflectivity factor,  
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0
( ) exp( 0.46 ( ) )

r

A r k s ds= - ñ  is the two-way Path-Integrated Attenuation (PIA) factor for 

equivalent reflectivity, and k is the attenuation coefficient (dBkm
-1

).  The attenuated 

reflectivity in dBZ can be obtained by taking 1010log () of Equation (6) so that, 

 
0

'( ) ( ) 2 ( )
r

Z r Z r k s ds= -ñ  , (7) 

where Z(r) and Zô(r) are reflectivity in dBZ before and after attenuation, i.e. the intrinsic 

reflectivity and attenuated reflectivity, respectively. It can be seen that the total PIA in 

dB, i.e. 1010log ( ( ))PIA A r=- , is equal to twice the integral of k between range 0 and r, 

reflecting the effects of two-way attenuation. For the purpose of data assimilation, the 

effect of attenuation and its correction can be achieved by including Equation (7) in the 

observation operator for reflectivity. The equation for the reflectivity calculation in the 

observation operator therefore becomes, 

 10 6 3 0
'( ) 10log ( ) 2 ( )

1

r
eZ

Z r k s ds
mm m-

= -ñ ,        (8) 

The radar reflectivity factor Ze and the attenuation coefficient k are linked to 

hydrometeor mass content (W, in mass per unit volume of air) through an exponential 

form DSDs of rain, snow and hail/graupel, consistent with the DSD assumptions in the 

5-class single-moment microphysics scheme of Lin et al.(1983) used in the ARPS 

prediction model used in this study: 

 0( ) exp( )N D N D= -L,  (9)  

where N0 is the intercept parameter and ɤ is the slope parameter. The intercept N0 is a 

constant, and the slope parameter is then uniquely linked to W (=ʍaq, where ʍa is the air 

density and q is the mixing ratio), through the assumptions about the DSDs and 
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hydrometeor density. The effect of DSD uncertainty has been tested in a set of 

sensitivity experiments in XTZ09; the attenuation correction procedure as part of the 

EnKF data assimilation system appears to be less sensitive to the DSD model or radar 

calibration error than conventional methods. 

The hydrometeor content and radar variables are represented by weighted 

integrals over the DSDs as follows: 

 3 ( )
6

W D N D dD
p
r= ñ , (10) 
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Z D N D dD
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p
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 4.343 ( ) ( )ek D N D dDs= ñ , (12) 

where ʍ is the density of hydrometeors, 
1

2

r
W

r

K
e

e

-
=
+

  is the dielectric factor of water, ʀr 

is the relative dielectric constant of water, ʎb is the backscattering radar cross-section 

and ʎe the extinction cross-section for hydrometeor particles. Either Mie theory or a T-

matrix method are chosen to calculate the cross-sections, depending on the experiment. 

In this study, we mainly use Mie theory.  

For computational efficiency, we perform calculations within the possible range 

of water content beforehand, and use curve fitting to obtain formulae that can be used 

efficiently during data assimilation. We derive parameterized relations of model-

predicted W with Ze and K through equations (9), (10), (11) and (12), in which the Mie 

theory is used to calculate the backscattering radar cross-sections and the attenuation or 

extinction cross-sections. Details of the coefficients for power-law relations for all 

hydrometeor species are described in XTZ09 and can be found in Appendix A. 
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2.2.2 The observation error model (OEM) 

Attenuated radar data inherently leads to spatially non-uniform observation 

errors. Severely or completely attenuated observations often contain significant 

observation errors, while un-attenuated observations tend to be more accurate. 

Unfortunately, in practice, we have little knowledge of the distribution of observation 

error associated with attenuated radar observations. We can, however, try to capture the 

main structure empirically by noting that when attenuation is occurring along the path, 

the reflectivity observations become small or even zero. The observation error model 

(OEM) is proposed to serve this purpose. 

As the first attempt, an analytical relation between observation error and 

reflectivity is designed based on the observed value of reflectivity. In this relation, 

larger observation errors will be assigned when observed reflectivity is smaller, or even 

zero, under the assumption that small reflectivity values indicate the possibility of 

attenuation.  Smaller observation errors (decreasing to a small constant value) will be 

used when the reflectivity observation value is larger. In real CASA radar data, a flag 

can be included to distinguish between clear air echo and fully-attenuated echo. Thus, in 

our OSSEs, the simulated observations contain such information as well. When an 

observation is marked as clear air, a constant small value (e.g. 2 dB) will be specified as 

the reflectivity observation error during data assimilation. We name this relation the 

analytical observation error model (hereafter, AEM).  

The AEM is designed as below: in regions where reflectivity is below a 

specified minimum threshold (e.g., 10 dBZ), the observation error deviation is assigned 

a constant, large value (e.g., 8 dB), while in other regions a logarithmic relation is used 
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to model the observation errors for the observations. Equation (13) gives such a 

relation: 

_ min R  < R

       C

      max(log( ),1.0)

e e

obs

obs set

e

if

else

U

R

s

s s

=

= Ö .               (13)

 

Here, „obs denotes the modified observation error variance; „set denotes the original 

preset observation error variance. Re is the value of observed reflectivity and Re_min is 

the threshold used to define whether a constant value C should be set as observation 

error, or a logarithmic form should be used. U inside the logarithmic form can be varied 

in the equation. The constant value C and U are chosen based on experimentation, and 

can be varied from case to case to obtain the best analyses. In Chapter 3, we will further 

discuss the possible settings of C and U and corresponding results. 

Other than the analytical forms of observation error model, another possible 

form of observation error model that considers multiple possible error sources and 

calculates corresponding error based on estimation obtained through EnKF is proposed 

in section 3.5. According to the process of obtaining radar observations and assimilating 

radar observations in EnKF, the observations can be decomposed into different parts 

and parameterized differently. The possible error components are: observation 

estimation error; reflectivity model error; attenuation mode error; signal-to-noise-ratio 

related bias or error; and inhomogeneity related error. During data analysis, those error 

components can be calculated based on the information estimated from the background, 

thus providing us another possible way to specify proper observation error for each 

observation. And this type of observations error model is named as the multi-sources 
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error model (MSEM). Tests and result comparisons between the two types of 

observation error models (MSEM and AEM) will be discussed in section 3.5. 
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Chapter 3: OSSEs Assimilating Attenuated Data from an X-band 

Radar Network for a Squall Line and testing with multi-error sources 

observation 

3.1 The truth simulation  

A numerically-simulated QLCS was generated by the Advanced Regional 

Prediction System (ARPS;Xue 2000; 2001; 2003) to serve as the truth simulation for 

OSSEs. The ARPS is used in a 3D cloud model mode in which cumulus 

parameterization is not used and surface physics and radiation processes are ignored. 

The prognostic variables include three velocity components u, v, w, potential 

temperature ʃ, pressure, p, and six moisture variables, i.e., water vapor specific 

humidity qv,, and mixing ratios for cloud water, qc, cloud ice qi, snow qs and hail qh. In 

addition, turbulence kinetic energy is also predicted and used to determine turbulent 

mixing coefficients based on a 1.5-order turbulence closure scheme. The microphysical 

processes are parameterized using the Lin et al (1983) scheme with two categories of 

liquid water and three categories of ice. 

The physical domain of all experiments is 293

 

³197

 

³16 km
3
 and the horizontal 

grid spacing is 1.5 km in most experiments (FIG 3. 1a). To better resolve the lower 

atmosphere, a vertically stretched grid with a minimum vertical grid-spacing of 100 m 

near the surface is used. The initial homogeneous storm environment is defined by a 

two-layer wind shear profile (FIG 3. 1b), in which the westerly wind increases linearly 

from zero to 15 m s
-1

 at 2.5 km and remains at 15 m s
-1

 above 2.5 km. To initialize the 

truth simulation, a line of thermal bubbles with 4 K maximum potential temperature 

perturbation, along with additional random perturbations of 5%, is used to trigger the 
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storm, located at x=50 and z=1.5 km from the northern domain boundary to southern 

domain boundary. The radii of these bubbles are 10 km in x-direction, 20 km in y-

direction and 1.5 km in the z-direction, while the distance between each bubble is 9.6 

km, and the southernmost bubble is 9.6 km from the southern boundary. A wave 

radiation condition is applied at the west and east boundaries while a periodic condition 

is used at the north and south boundaries. Free-slip conditions are applied to the top and 

bottom boundaries. The length of the simulation is four hours. 
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FIG 3. 1 (a) Map of 288 km × 192 km computational domain. The small solid circles 

represent the maximum 40 km range of the CASA IP1 radars. (b) Environmental 

soundings used to generate the truth simulation of a squall line. 
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3.2 Simulation of radar observations 

The four X-band polarimetric CASA IP-1 radars used in OSSEs are located near 

Chickasha, Rush Springs, Lawton and Cyril (McLaughlin et al. 2009) in Oklahoma (FIG 

3. 1a).  Simulated radar data are generated, following XTD06, using a Gaussian power 

weighting function in the vertical for observations simulated on radar elevation levels 

(PPI or plan position indicator planes). Data are assumed to have been interpolated to 

the model Cartesian coordinates horizontally, but remain on the radar elevations 

vertically. The effect of Earth curvature and beam bending due to vertical change of 

refractivity are taken into account using the 4/3 effective Earth radius model discussed 

in Doviak and Zrnic (1993). The velocity is projected to the direction of radar beam 

locally to give the simulated radial velocity, and the terminal velocity effect is properly 

taken into account using the hydrometeor state variables. The radars are assumed to 

operate in one of the CASA radar storm scan modes, having 10 elevations with one 

volume scan every 5 minutes and a 1.8 ̄beamwidth. The attenuated reflectivity is 

calculated by integrating along the path of each radar beam using Eq. (7), where the 

reflectivity before attenuation (in dBZ) is given by 

   

Z =10log10[Zer + Zes+ Zews + Zeh + Zewh], (where subscripts r, s, and h denote rain, snow 

and hail, while ws and wh denote wet snow and wet hail, respectively). 

As an example, FIG 3. 2 shows the simulated radar reflectivity obtained from 

the four radars at an elevation of 5.0,̄ with and without attenuation, at 135 min of 

model time. Each radar only partially covers the QLCS. The high reflectivity regions, 

mainly associated with high mixing ratios of rainwater and hail, including melting hail, 

tend to be completely attenuated at large ranges from the observing radars, resulting in 
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wedges of zero or near-zero reflectivity behind heavy precipitation cores. The 

maximum reflectivity in the convective cores is reduced by more than 50 dBZ. Thus, 

the pattern and magnitude of attenuation appear realistic. Since this radar network has 

many overlapping regions, some of the heavily-attenuated reflectivity regions from one 

radar can be detected by other radars, which in the following experiments helps model 

correct attenuation. 

 

FIG 3. 2 Simulated (a) non-attenuated and (b) attenuated reflectivity observations at 5 ° 

elevation at 135 min of the squall line simulation time. 

 

In all experiments, Gaussian-distributed random errors with a mean of zero and 

standard deviations of 1 m s
-1

 and 2 dB for radial velocity Vr, and reflectivity Z, 

respectively, are added to the simulated data sampled from the truth simulation. These 

values are also used to specify the observation error variances during data assimilation.  

This is not the case in the observation error model series of experiments to be discussed 

later. 
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3.3 Data assimilation experiments  

The basis of our data assimilation is the EnKF radar data assimilation 

framework of XTD06, which was based on Tong and Xue (2005) and further enhanced 

in Tong and Xue (2008) to include the terminal velocity effect in the radial velocity 

observation operator. The observation operator including the attenuation effect, as 

described in section 2.2.1, is used for reflectivity. 

An ensemble of 40 members is initialized at t = 105 min of model time by 

adding random perturbations to a horizontally homogeneous ensemble mean defined by 

the environmental sounding used by the truth simulation. Observations are assimilated 

every 5 min beginning at t=110 min. The smoothed random perturbations are sampled 

from Gaussian distributions with zero mean and standard deviations of 2 ms
-1

 for u, v, 

and w, 2 K for potential temperature ʃ, and 0.6 gkg
-1

 for qv, qc, qr, qi, qs, and qh. 

Pressure and microphysical variables are not perturbed. The variables u, v, ʃ, and qv at 

the first grid level above ground are not perturbed, following XTD06, as doing so was 

found to introduce noise into the analyzed pressure field. The covariance localization 

procedure follows Houtekamer and Mitchel (2008a), applying a Schur product of the 

background error covariance calculated from the ensemble and a correlation function 

with local support. Covariance inflation is limited to the grid points where observed Z > 

10 dBZ and all points within 4 grid points in the horizontal (6 km in perfect model 

experiments) and/or vertical directions. The multiplicative inflation factor, ɼ, is set to 

1.07. 

As described in Table 3. 1 a set of standard experiments is first performed to test 

the effectiveness of the reflectivity observation operator for the QLCS case. We 
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compare the performance of performing attenuation correction during EnKF data 

assimilation (experiments name start with óATCô) with the experiments that do not 

perform attenuation correction (experiment names start with óNô). Suffix óZô indicates 

that only reflectivity data is assimilated, otherwise both Z and Vr data are assimilated. In 

VRONLY, only radial velocity data are assimilated. Simulated attenuated radar data are 

used in all experiments except in experiment óNAC10Zô, in which only reflectivity data 

above 10 dBZ are assimilated. Experiment names starting with ñOBSEò indicate the 

application of the AEM during data assimilation. We also tested three types of possible 

reflectivity relations in OBSEs series experiments. The assimilation of Vr data is 

conduct once read-in Z exceeding 10 dBZ in all experiments. Details of the observation 

error model will be discussed further in section 3.4.2. 
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Table 3. 1 Lists of perfect model OSS experiments 

Experiment Observation operator 

with attenuation effect 

Observations 

assimilated 

Observations error 

standard deviation 

NAC No Z & Vr 2dB 

NAC10Z No Z ( >10 dBZ ) & Vr 2dB 

VRONLY No (not necessary) Vr 2dB 

ATC Yes Z & Vr 2dB 

ATCZ Yes Z 2dB 

OBSE Yes Z & Vr reflectivity relation 2 

OBSEZ Yes Z reflectivity relation 2 

OBSEONLY No Z & Vr reflectivity relation 2 

OBSE1 Yes Z & Vr reflectivity relation 1 

OBSE3 Yes Z & Vr reflectivity relation 3 

 

Table 3. 2 lists all imperfect model experiments and contains specific 

descriptions of the experiment settings. In this set of experiments, the truth simulation is 

generated in the same way as the truth used in the perfect model experiments except that 

the grid spacing is 500 m.  When the EnKF OSSEs are performed using a 1.5 km grid 

spacing, model error due to the resolution difference arises.  The impact of model 

resolution error is examined in experiments starting with ñLOWRESò.   For 

comparison, experiments with prefix ñHIRESò are run at the full 500-m grid-spacing 

(i.e. without model resolution error). The observation operator with attenuation effect is 

used in all imperfect model experiments; the suffix ñOBSEò denotes whether the 
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Observation Error Model is applied during data assimilation. Comparison between these 

experiments will enable us to evaluate the impact of observation error and model error 

when assimilating attenuated radar observations. 

Table 3. 2 Lists of imperfect model OSS experiments 

 

Experiments Observations 

assimilated 

Observation error 

deviation 

Localization 

radius 

Model resolutions 

(model error 

contained) 

HI_ORG Z & Vr fixed observation error 

(2dB) 

4dx (2 km) dx=dy=500 m, 

dz=500 m 

(no) 

HI_OBSE Z & Vr reflectivity relation 2 4dx (2 km) dx=dy=500 m, 

dz=500 m 

(no) 

LOW_ORG Z & Vr fixed observation error 

(2dB) 

4dx (6 km) dx=dy=1500 m, 

dz=500 m 

(yes) 

LOW_OBSE Z & Vr reflectivity relation 2 4dx (6 km) dx=dy=1500 m, 

dz=500 m 

(yes) 

 

3.4 Results of experiments 

A key question our study seeks to answer is whether or not the EnKF system can 

successfully recover the attenuated signal in areas with near-complete signal extinction. 

We also examine the impact of the fact that the QLCS in the truth simulation is much 

larger than the radar network observing it. XTD06 shows that when the radar does not 

provide full coverage of the storm system, significant errors could develop in the 

analysis that cannot be effectively corrected due to lack of observational information. 

Including data from WSR-88D radars can help increase the radar coverage. However, 

because the purpose of this research is to examine the performance of a short-

wavelength observation operator with attenuation effects, we will focus on observations 
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from X-band radars only. As such, it is expected that the root-mean-square (RMS) 

errors of the results will be higher than those in XTZ09.  

           Furthermore, in this study, calculation of RMS errors is confined to grid points 

inside of the IP1 radar network coverage region since the model cannot accurately 

analyze storm features outside the radar coverage area. Calculating RMS error only 

inside radar network coverage allows us to focus on evaluating the capability of the DA 

system in recovering the model state subjecting to reflectivity attenuation.    

3.4.1. Perfect model experimentsðsimultaneous attenuation correction in EnKF 

for a squall line 

First we evaluate the effectiveness of the observation operator with attenuation 

(hereafter called the attenuation observation operator) proposed by XTZ09 in the 

simulated squall-line case. The analysis of NAC (FIG 3. 3b) shows a very weak storm 

system, which is mainly due to assimilating data, containing large error caused by 

attenuated observations and an improper observation operator which does not account 

for attenuation (hereafter called the original observation operator). Especially for the 

fully attenuated reflectivity from KSAO and KRSP (FIG 3. 2b), the observations 

provide incorrect information regarding the storm, which result in nearly echo-free 

regions in the south-east portion of radar network (this region is located around 150-170 

km in x direction, and 64-82 km in y direction). Discarding radar reflectivity below 10 

dBZ during data assimilation (NAC10Z) could improve the analysis quality by omitting 

bad observations; however, doing so will also remove the clear air data that could aid in 

suppressing spurious echoes. NAC10Z shows minor improvement on storm reflectivity 

structure (FIG 3. 3c). Assimilating radial velocity only can improve the wind field and 
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produce a reflectivity pattern closer to the truth in the squall line area inside the radar 

network coverage region (FIG 3. 3d). There is still, however, a large amount of spurious 

echo surrounding the storm system due to lack of clear air data assimilation. On the 

other hand, the application of the attenuation observation operator allows the model to 

correct attenuation based on simultaneous state estimation inside the storm system. 

Even assimilating reflectivity data alone (as in ATCZ) can help capture several 

convective cells of the storm (FIG 3. 3e) compared to NAC (FIG 3. 3b) and NAC10Z 

(FIG 3. 3c). However, some of the attenuation correction seems erroneous, especially in 

the area near 70km in the x direction and 170 km in the y direction in FIG 3. 3e, 

possibly due to inaccurate state variable estimation affected by the spurious echoes 

located just outside of the southeast edge of KRSP range. The addition of radial velocity 

data in experiment ATC makes the storm look much like the truth storm inside the radar 

coverage area both in terms of storm structure and intensity at 135 min of model time 

(FIG 3. 3f), except for the southern part of the squall line. Here, in the overlapping 

region of KLWE and KRSP, the model is still able to recover some small echoes, likely 

because data from KLWE are less attenuated at the time (FIG 3. 2b). When only 

observations from KRSP are available, the filter failed to correct this area because it 

was assimilating fully attenuated observations. However, the model does not produce 

erroneous echoes as in ATCZ due to assimilation of radial velocity data. Still, more 

work is needed to improve our system of EnKF which includes attenuation correction. 
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FIG 3. 3 The horizontal wind vectors (m/s, plotted every third grid point) and computed 

reflectivity (shaded at 5 dB interval, starting from 5 dBZ) for (a) Truth simulation; and 

experiments (b) NAC; (c) NAC10Z ; (d) VRONLY; (e) ATCZ; (f) ATC at model time 

135 mins 






































































































































































































































































