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Abstract

In this study, a new set of reflectivity equations is introduced into the ARPS (Advanced
Regional Prediction Systentjoud analysissystem. This set of equations incorposadeuble
moment microphysics information in the analysis by adoptisgteofdiagnostic relationshgp
between the intercept paramstandthe correspondingiass mixing ratiosA reflectivity- and
temperaturebased graupel classification scheme is also implemented according to a hydrometeor
identification (HID)diagram. A squall line thaiccurredon 23 April 2007 over southern China
containng a pronounced trailing stratiform precipitation regiomussd as a test case to evaluate
the impacts otheenhancedloud analysis scheme.

The results showsingthe enhancedloud analysis schems able tobettercapturethe
characteristicof the squall line in the forecastThe predicted squall linexhibits a wider
stratiform region an@ morecleaty definedtransition zondetween the leading convemtiand
the trailing stratiform precipitationregion agreeingbetter with observatiain general when
using the enhancedcloud analysistogether withthe twomoment microphysics scheme
Quanttative precipitation forecast skiicoreis alsoimproved.


http://en.nuist.edu.cn/AboutusSAS.jhtml

1. Introduction

Cloud microphysical processestrongly influenceon the structure, dynamics and
evolution of convective systeng€hin 1994 van den Heever and Cotton 20@¥im et al. 2009
Smith et al. 2009Rowe et al. 201;2Van Weverberg et al. 20LZThese processes are currently
parameterized in numerical weatheprediction (NWP) models using either bulk or bin
microphysics(MP) parameterizatioschemesBulk scheme specify aparticle size distribution
(PSD)for eachhydrometerspecies and predict certain moment®8D. Bin schems predict the
evolution of PSB by discretizingthe PSDs into multiple size bingherebyallowing much more
flexibility in representing the hydrometeor szend the spectrum of fall speedstc Bin
schems are however,computationallymuch moreexpensiveand often impractical in an
operational contexCurrently, lulk schemes are widely usedoperational NWHRnodels.

For abulk scheme, cloud and precipitatiBsDsare often represerdgd by a gammasize
distribution(Ulbrich 1983 Milbrandt and Yau 2005a

NX(D): NOxDaxé /XD’ (1)

where N, is the number concentration, aiNj, , a, and/, are the mtercept,shapeand slope

parameters ofhe PSD, respectively, and is the particle diameteSubscriptx refers to one of
the cloud/hydrometeor specie¥/hen a =0, the abovegamma distributionreduces toan
exponential distributioMarshall and Palmer 1948

N (D) = N,, . 2)
The p™ moment ofthe PSDin Eq.(1) is
Mx(p) - NTx ql -{ax '|B) ) (3)
/Y Gl +g)

The zeroth moment oPD is the total number concentratiothe third moment is
proportional to thenassmixing ratig and the sixth moment related tahe reflectivity factorin
typical singlemoment (SMMP schenes(e.g.,Kessler 1969Lin et al. 1983 Milbrandt and Yau
20059, the mass mixing ratgx g, ), which are monotonically related to fixed,, , arepredicted
In reality, the lattens not the casé’revious studie€Straka et al. 2009 awson et al. 20)thave
pointed it outthat if the particlesof a speciesvere growing by aggregation or breakuy,,

changes but, does not; and for accretion or diffusiag, changes butN,, does natin reality,
the g, and N,, do not rela¢ to each othemonotonically The computationally cheap&M

schemeshould be improveth some wayto betterrepresent theeal PSDs. One of such efforts
is to allow for additional free parameters irthe PSDsby adoping doublemoment (DM) or
triple-moment (TM) schemeghat predict two or three PSD moments, respectiv@iynsitivity
studies(Ferrier 1994 Ferrier ¢ al. 1995 Milbrandt and Yau 2005Dawson et al. 20)Guggest
that multi-momentscheme produce more realistic storm structsittan SM scheme®M or
TM schemes are, however, computationally more expensive, since they double or triple the
number of prognostic variables associated wWithspecies

Another approacko improve SM schemas to find certain relationship betweear) and

N,, SO that only one moment has to be predictedMyytcan still vary Zhang et al. (2008)

derived a diagnostic relationship between the intercept parameter and the water content based on
two-dimensional video disdrometer (2DVD) measurements taken in Oklahoma gutire
summer seasons @D05 2006 and2007. However,the relationships for rain wateronly and
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was derivedfrom 2DVD surface measurementSor convective storm modeling, relationships
for all precipitation species suitable for all levels are need&inwright et al. (2014fhereafter
W14) formulated and tested diagnostic relationships betwenintercept parameteand
water/ice content for rain, snow, graupel and Ii&il,, - W, relations whereW, is water/ice

content,and x can be rain, snow, graupel and hdhsed on théMilbrandt andYau (MY)

single and multtmoment MP scheme(Milbrandt and Yau 2005ab) within the Advanced
Regional Prediction SystemARPS (Xue et al. 2000 Xue et al. 200 They derived the
relationships fromthe ARPSthreedimensional (3D)simulation output using the DM MY

scheme andemonstrated thdhe SM schememployingthediagnosic instead of fixedN,, can

produceresultsclose to those dhecorrespondinddM scheme.

The abovefinding is inspiring In addition to employing thediagnostic N, - W,
relationshipg within the MP parameterization schemes themselves, tagybeused to help with
the analysis of microphysical states when assimilatatr reflectivity data, in a way that is
consistent with the MP scheme us@rrently, radar reflectivity data assimilation remains a
challengng problem Sun and Crook (1997, 1998psimilate radar reflectivity viathe four-
dimensional variational (4DVAR) analysis scherfibeir systemhowever,assumesvarm rain
MP only while strong nonlinearity associated wit ice MP tends to create difficulties with
4DVAR minimization. In a3-dimensional variational3DVAR) framework, direct assimilation
reflectivity of requires additional assumptio(Sao and Stensrud 201L2Vithout direct links to
other state variables in the observation operators or reliable background erramosarssnces,
direct assimilation ofeflectivity data withina 3ADVAR framework alsdends tolimit the direct
data influence to the precipitation hydrometeors amke analysis

With the help of ensembigerived flowdependent background error covariance and in
particular croswariable ceariance involving MPand otherstate variables, thensemble
Kalman filter (EnKF) (Evensen 1994technique has been shown lie able to estimate state
variables associated with SM ice MP scheifieasg and Xue 2005rom radar dataTong and
Xue (2008a, b) and Jung et al. (201@xher demonstratesuccestul estimaton of PSDrelated
MP parameterswhile Xue et al. (2010andJung et al. (2012)lemonstratedhat the EnKF is
capable ofestimating both mixingatios and number concentrations associated with a two
moment MP schemélhe EnKF method is, however, computationally rather expensive, and for
the convective scales has mostly been limited tereaktime research applications at this time.

A computationally efficient alternative for assimilating the reflést data is thesemi
empirical cloud analysisnethod A complex cloud analysis procedui availablewithin the
ARPS systemand has proven effective immany researchstudies(Xue et al. 2003Hu et al.
2006a Hu et al. 2006p Schenkman et al. 20L-nd well as contingal U.S. scale realtime
forecastgXue et al. 2018 In the ARPS cloud analysis systethe hydrometeomixing ratios
are estimatedfom observed reflectivitpased on twaeets ofreflectivity equations as alternative
options In the first setthe rainwater mixing ratio is retrieved usitige Kessler reflectivity
equation(Kessler 1969 and snow and hail are retrieved using Regers and Yauweflectivity
formula (Rogers and Yau 1989This set of equation®r option will be referred asKRY
hereafter The secondset of equations retrie\geprecipitation mixing ratios according tie
reflectivity formula defined irmith et al (1975) This set of equations will beferred asSMO
and other details on the equations can be fouritbitg and Xie (2005)alsa Hu et al. (2006a)
presented comparisobgtweenthesetwo options for the analysis of a supercell staase For
the purpose of thistudy,we choose th&MO option as the reference for comparison with our
enhanced scheme.



With both setsof equations the intercept parameter foeach hydrometeorPSD is
assumed to be constards typically of SM MP scheme$Vith this assumption, number
concentrations associated with DM schemmeéght not be optimallynitialized even when certain
classificdion or partition schensefor the hydrometeors are devise€lb initialize a DM MP
forecast, both mass mixing ratios and total number concentratrengquired One possible
solution to this problemis to utilize the diagnostic relations between the mixmatios/water
contents andhe corresponding intercept parametéfhang et al. 2008 This allows for the
diagnoss of the total number concentrat®rgiven the reflectivity contributiomf a given
speciesAs mentioned earlie@ SM schemeaising such diagnostic alons hasbeen shown to
produceresultsclose to(although not as goods thoseof a DM schemewithin a prediction
model (W14). The application of such aapproachwithin a data assimilation procedui®
investigatedin this study. The SMbased cloud analysis schem&hin the ARPS modeling
systemis enhanced to do so.

Furthermore both KRY and SMOformula used in the current ARPS cloud analysis
systemassume a hail category withogrtaupe] the MY schemes that we wilise in our study
include both hail and graupel categories, and including both allows more realistic sinmsutati
convective systems. Th&udy will addthe ability of analyzing theadditionalgraupelcategory
in the ARPScloud analysis systemd\ simplified hydrometeor identification (HIDnhethod will
be used to help distinguish graupel.

To evaluate the impé& of our enhanced cloud analysis scheme on the analysis and
forecasing of convective systems squallline from south Chinahaving a pronounced trailing
stratiform precipitation regiofis chose as the test cas&quall lines with trailing stratiform
precipitationare common in both tropical and midtitude regios, and hae been studied by
many authorgZipser 1977 Moncrieff 1978 Houze et al. 1989Biggerstaff and and 1991
Rotunno et al. 1998arker and Johnson 200 eisman and Rotunno 2004t has beeriound
that classic maturequall lines usuallyhave two distinct regios of precipitation separatealy a
transition zoneof weaker precipitationa convective region with heavy precipitatiand a
trailing stratiform region with moderate precipitatidme presence of thteailing stratiformand
transitionzones has beenattributed to both fall speed sorting for particles originating from the
top of convective cell{Rutledge and Houze 198Fovell and Ogura 1988iggerstaff and
Houze 1993 and enhanced subsidenicethe transition zonevhich increases sublimation and
evaporation(Smull and Houze 1985Many studies have attempted to simuldte enhanced
trailing stratiformregion (Fovell and Ogura 19885allus and Johnson 1995but theregion
even when obtainedends tobetoo narrow andveak The lack of a clear transition zone of low
radar reflectivity insuch simulatiors is another problen{Fovell and Ogura 1988 Recently,
Morrison et al. (2009lemonstraté that a wide trailing stratiform region can be produced by
adopting DM MP schemes.Given that mature squall lines contain distinct regions of
precipitation of different characteristics that have been historically difficult to simulate, squall
lines are god choices for testing and evaluatingmicrophysics initialization and related
predictions.

The rest of thispaper isorganizedas follows. The cloud analysisystemand new
reflectivity equatios are introduced in section. 2n section3, the caseto be simulated is
introduced Section 4describes theetup ofnumerical experiments aride verification method.
Section5 presentsheresults of experimen@nd section 6 gives immary and enclusions.



2. The ARPS doud analysisframework and enhancements

a. TheARPScloud analysigramenork

The ARPSsystemis usedfor the analysis angredictionof convective stormén this
study.Fortheradar dataradial velocity isdirectly assimilatedusing theARPS 3DVAR(Gao et
al. 2004. The drect variational analysis of reflectivity im 3DVAR framework is difficult
becauseeflectivity is the function of several prpdation hydrometeors, and 3DVAR itself does
not know how to properly attribute observesflectivity amonghydrometeor specie§&sao and
Stensrud (2012partially address this problem by restricting ice (rainwater) hydrometeors to
above (below) the frozen level within the reflectivity formula which is only an approximation.
The methoddoes not allow for the direct estimation of temperature, moisture and cloud species
either.Thus, asemiempiricalcomplex cloud analysis mesirable and within the ARPS 3DVAR
framework is use@s an additional step after the 3DVAR analysisadial vel@ity and other
observations. TheDVAR analysiseffectivelyprovides a backgroundor the cloud analysisThe
dominantprecipitation type (rain, snowfreezingrain or hail) is identified according to the
background states and observed reflectivity befmpplying reflectivity formula to retrieve
mixing ratics at each grid point.

A brief description of theorocedure diagnarsg the precipitation typesvithin the ARPS
cloud analysiss given here Preciptate begins as snow if the echo fe@bove thed°C level; it
is otherwiseclassifiedas rain.The precipitation type ishenidentified fromechotop downto the
bottom of each vertical grid column. If the ambient wetlb temperature is larger than31C,
precipitate melts into rain. If the precipitate once again fallsantair layer colder than @, it
turnsinto freezing rain. A simple threshold of reflectivity above 45 dBZ is used to diagnose hail
More details can be found iAlbers et al. (1996) To include graupel in this proceduran
approach similar tohe simplified HIDdiagramof Lerach et al. (2010s adopted in our study.
The original ARPS cloud analysis is done firsttekthen graupel is identified at a grid point
when one of the following criteria is met: a) the precipitation type isdametified as snow, the
reflectivity is between 32 and 41 dBZ and the ambient temperature is below 0 €; b) the
precipitation types preidentified as freezing rain, the reflectivity is between 41 and 54 dBZ and
the ambient temperature is below 0 €C; c) the precipitation type isidmetified as hail, the
reflectivity is between 41 and 54 dBZ and the ambient temperature is belowA@drdingly,
the reflectivity threshold to be used to identify hail is now set to 54 dBZ instead of 45\RZ
and dry graupslare not distinguishe@dnd are assumed dry within the reflectivity formula
following Milbrandt and Yau (20054). The reflecivity formulafor graupel in SMO is assumed
to bethe same athat forhail as show in Table 1 but with differentparticledensites (913 kg
m for hail and 40kg m for graupel) Only one dominant type of hydrometeor is analyzed at
anyone model grigoint, which is a limitation of the cloud analysis scheme. The model usually
goes through a short period of adjustmeuting the forecasfTo be able to analyze @xisting
species, more information is needed, either from observations or from a nummexiedlor both.
For example, when an ensemble Kalman filter is used, multiple species can be analyzed making
use of crosgovariance information derived from the background ensemble (Tong and Xue
2005).

To avoid adding too much hydrometeor contemt wpper limit (0.01 kg kg') is setto
each hydrometeofThe hydrometeofields arethen horizontally smoothed to mitigate sharp
gradients.For these reasons, the analyzed reflectivity field does not exactly match observed
values at individual grid points buhe differences are generally smallhe original KRY



equationsvere derived based on cloud physics and hydrometeor backscattering models while the
SMO were derived based on curve and parameter fitting to observations. In bothNgsss,

assume to be constaafjdcannot vary temporally or spatially

Under the assumption that observed reflectivitymigch more reliable than its model
counterpartis, the cloud analysis system repladbe background hydrometeors with those
retrieved from observationsThis also helps remove spurious precipitatidound in the
backgroundImportantadjustments téemperature and moistunmeside cloudsareusuallymade
by assumi ng aadiabatidascemfdir paroeils svithin the clouthatalsoaccounts
for environmental aientrainment as presented by et al. (2006a)Schenkman et al. (2011)
found thatrepeatedadjustments of cloud watand water vapor mixing ratios in higrequency
assimilation cycls led to unrealistic warming in the middle troposphénetheir mesoscale
convective system (MCS) cageuided by their studyduring thecloud analysis stepof our test
case the cloud vater and water vapor fieldare not adjustedat all, only the precipitation
hydrometeomixing ratios (rain, snow, graupel and hail) anglioud temperaturareadjusted.

b. Cloud analysis based on diagnostic interception relations for-riwament microphsics
initialization

As indicated earlier, wentroducenew reflectivity equatios based on the diagnostic
N,, - W, relationshig and the gamma distributioRirst, thePSDfor each hydrometeor category
is described bythe analyti@l genealized gamma distribution functio(Milbrandt and Yau
20053, as given in Eq(1). Although in the experiment® be presentenh this paperthe shape
parameteia, is set to zero, the complete generalized gamma distributioeedhere for our

methoddescription(Ferrier 1994 Milbrandt and Yau 2005a

NOx = NTX 1 /:>L<+ax ’ (4)
G1 4a,)
ql -*d a ) C NTx 1/d,
/, = 5
| G1+a,) ] ©

where N, is the total number concentration for categaryand G is the gammadunction 7 is
theair density.c, is aconstant for each category and defineacgs (p/6) £, r, is the density
of each hydrometeorcategory The hydrometeormassm, is related to its diameteD, by
m (D,) = ¢, O . For spherical particles), is 3. N, canbederived from 4) and §),

N :[N G_ a )]dx/(1+dx ﬁx)[ G(l 1a ) /qx-| @ &)@ df @ (6)
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The sxth momentM, (6) of thePSDor the radar reflectivity factoZ, is
G(a 2
Zx = MX(G) = (ZX) ( II\?X) . (7)
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Using Réeigh theory,Z, can also be converted to the equivalent radar reflect&gjty
using

N

o

|K
Kl

@]

Zo, (8)

N
o?tL
|- O OIN
N

W



Where|K|i is the dielectricconstanfor the hydrometeorconsideredtakinga value of 0.176 for

ice-phase hydrometeors (snow, hail and graupel) and 0.93 foﬂlKeﬁnis the dielectriconstant

for rain and takes a value of 0.9Bombiring (6), (7) and @), we can get the relationship

between equivalent radar reflectivity ah@ mixing ratio of each category
1+a, 4,

FIKI o ﬁ"" “
t K[ Ga,) 7 v

1+a,

Gl a,) r &
3(1 tad)c y y

1+a, 4,

Zo> ", (9)

q, = {NOX G_ a )}1+a -Qd

where

Gla)= 6126 +a)4 +) 10
(B+a,)(2 +3)1 +a)

Equaion (9) based on a fixed intercept parameigrgood for apure SM scheme
Combined with Eq(6), this set of equatiagusing fix intercept parametes labelledNOC (C
indicates constant NOBy adoptinga diagnostic relation between the water contentirstedcept
parameter of exponential distributiothe pure SM scheme can be improv@il4). The
diagnostiaelationfor eachcategorycan be expressias

NOx = CLXV\&X ’ (11)
whereW, is related to mixing rati@, via W, =1000r q,. W, is in g m® andq, is in kg kg.
UsingEq.(11), Eq.(9) becomes

1+a, 4,
K 2 Gax 2d; 6,d, d, dy
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Combining Egs.(6) and (L1), the total numbetoncentration can be calculatesl

14a,)

N, = 10007 Y= W/(L+de &y) G(— (1 &)/ df @) (1 cpeh, @M d, &;. 13

b =[6,10007 Y G )P0 " [T q (13)
The logarithmic reflectivity factor (referred as reflectivity in most parts of this paper

dBZ, isgiven by

Z
Z=10 |0glo m ) (14)

Equivalent radar reflectivity of rain, snow, hail and gelu,,, Z, Z,, andZ_, could

be derived fronEq. (14) after thedominantprecipitation type at each grid point is diagnosed.
Equatiors (12) and (L3) are directly implemented inthe enhanceARPS cloud analysisystem
This set of equati®using diagnosticrelationsis labelled NOD (D indicates diagnosti®NO).
Equation 6) is also used to retrieve the number concentrations for SM@impact of our
enhancedschemeon the analysis and forecast evaluatedwvith a squall linethat occurredin
soutrernChinaduring23-24 April 2007

3. The April 23, 2007south China squall line case
On April 23, 2007, a squall lineccurredover southern Chinalhe case, including the
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structures and evolution of the squall line, was documentédan et al. 2012 and represents
one of the mosintense andvell-organizedsquall lines that occurred over China. The squadl lin
had a pronounced trailing stratiform precipitation region duriniés life cycle.By 2200 UTC
April 23, 2007 a squall linehad formed near théorder between Guangxi and Guangdong
provinces of China (seeFig. 1). The squall linewas oriented eastvestward(Fig. 1a), and
propayated rapidlytoward south At 2300 UTC, theprimary convective line (L1)is clearly
defined and has gainel slightbow shapg(Fig. 1b). A second shorter,convective line (L2)
formedat the westendof L1 (Fig. 1b) andthosetwo gradually mergdinto one connectetine
extendng over 500 kmin length(Fig. 1c). During the 4 hour period fror8200 UTC 23 April
through 0200 UTC 24 April 2007, the squall line gradually intensifiedotform a broader,
stronger andvell-organizedconvectiveline (Fig. 1a-e). The convective regionstratiform region
andatransition zonef weak reflectivity inbetweenareclearly evident from 2300 UT@nd the
stratiform regiorexpanded in area over the tintebegan dissipatg ataround 0300 UT@\pril

24 (Fig. 1f) andmowved out tothe seaat 0400UTC (Fig. 1g). After 0400 UTCApril 24, most of
the squall linemoved out to seand was out of radacoverage Additional details on the
structure and evolution of this ewaran be found in Pan et al. (201R)eng et al. (2012jurther
examined reasons tfeformation ofthebow structire and the rear inflow.

4. Design of experiments

a. Themodel configuration

The ARPS modelis used aghe prediction model in this studyt is a threedimension
northydrostatic, compressible atmospheric mgdale et al. 2000Xue et al. 2001 Xue et al.
2003. For all the experimentm this study,the model is configed as followsMY DM MP
schemewith an assumption of, =0, fourth-order advection in both horizontal and vertical;

rigid top boundary combined with a wave absorbing layer; feomder computationdllter; 1.5
order TKEbased sugrid-scale turbulent mixing schemsnd PBL parameterization. Surface
fluxes were calculated using surface temperature and surface water cpneglitted by a two
layer land surface mode&nd radiative processegere calculated fromGoddard Space Flight
Center (GSFC) longand shorwave radiation parameterizatioMore details on the physics
options can be found in the afereferenced ARPS model description papers.

The experiments uséwo oneway nested domainwith the lambert conformal map
projection The outer domain consists of 323x328rizontalgrid points with a horizontabrid
spacingof 9 km and covers the middle and southerngmrChina §ig. 2a). The inner domain
consists of 579x3¥ horizontalgrid points with a haizontal grid spacingof 3 km. The grid is
stretched in the vertical, with 53 levelad a400 m averagevertical spacing and aearsurface
vertical spacing of 50 m.

Theouter domain was initialized frothe National Centers for Environmental Prediction
(NCEP) Global ForecastSystem (GFSpanalysis at 1200 UTC April 23, 200ateral boundary
conditionsfrom the GFS analysesere updatedh 6-h intervals. Terrain data were derived from
the 30s global terrain data.

Level Il data from sixChinese operati@a CINRAD-98D weatherradarsare used. They
are radarsat Guilin (GLRD), Shaoguan (SGRD), Guangzhou (GZRD), Jianyang (JYRD),
Fuzhou (FZRD) a n dFigX2ga).aBotmmdial véloCitah®reflectivity data are
assimilated, ad are manuallyquality-controlledbefore assimilatiomsingthe SOLO-II software
(including velocity dealiasing and ground clutter rempfraim NCAR.
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b. Experimendesign and verification methsd

The analysis and forecast timelines of all experimargshown inFig. 2b. The 16hour
9-km forecastaisingMY DM MP schemestaredfrom 1200 UTC 23 April 2004 using theFS
analyses as the initial and boundary conditions.

The N, - W, relations derived byW14 are based on a numerical simulation of a

supercell stormtypically at the U.S.Central Great Plaingnvironment It is not necessarily
suitable for subtropical squall lisen southern Chinaln this study, we follow the procedure

proposedof W14 to derive ourown version of theN,, - W, relations. Specifically, a-Bm

simulation of the squall linevasperformed using the MY DM scheme, starting from the initial
condition interpolated from the-l@m simulation at2000 UTC without radar data assilation
(CtrIDM). The outputs from the simulatiavereused to derive the relationshich will be given

in the results section.

To investigate the impact of reflectivity equationghin the cloud analysisgycled 3-km
data assimilationx@erimentsareconducted TheseexperimentsnamedexpS ExpC ExpD and
ExpDNG (Fig. 2b andTable2), start from 2000 UTC and assimilate radar data every 30 minutes
for two hoursuntil 2200 UTC and are based on the SMEQC and NOD equations in the cloud
analysis The mixing ratios and total number concentrations of rain, snow, graupel and hail are
calculated in the cloud analysis procedure for all these experimiérgsbackground at 2000
UTC is interpolated from the lém valid forecass at the same timd-orecastarelaunched from
the analyseat 2200 UTC andanthrough0400 UTG 24 April. The MY DM scheme is used in
those and all other experiments in during the foregastadditional experiment, ExpDNG, using
the sane configuration of ExpD but without the graupel classhe cloud analysjsis run to
investigate the impact addding thegraypel category in the cloud analysighen the cloud
analysis system replaces the background hydrometeors with those retreamedbBervations
all hydrometeorsre assunteto bezerofirst. In EXpDNG, graupelis zeroin the cloud analysis
but canform duringtheforecast.Theintercept paramters and densésof each species for SMO
and NOC are listed in Tabl These fixedintercept parametsrare seticcording toXu (1983)
which arebased on several field observation petgan China

The equitable threat scar¢ETSs) and bias (BIASS) are used to evaluatéhe forecast
performance of different experiments. The scores are calculatedrfgrosite reflectivity and-
hour accumulated precipitatiand referred as the refledgty or precipitationETSs/BIASs The
reflectivity scores are computed the model grid spacevhile the precipitation scores are
computedn the observation spac€he precipitation data are from rain gauge measurements.

The simulatedreflectivity for veiification (including the plots and the quantitative scores)
uses the MY DM formulain this papermatching theMP schemeof the forecastseven though
theinterceptparameter is fixed within SMO and NOC scheffiee dfferent reflectivityformula
used in thecloud analysisand the plottingorogram carcreate differences between thealyzed
and observedeflectivity at the analysis time. After the cloudanalysis nine-point horizontal
smootheris applied to theanalyedhydrometeoffields to avoid shargradents Reflectivity is
not calculated whethe mixing ratio is less than 18 kg kg or the number concentration is less
than 10° # m3.



5. Results and discussions

a. The diagnostid\,, - W, relations

As stated earlierour N, - W, relations are derived fromthe output of experiment

CtrIDM. After 5 hours offorecastat 0300 UTC the squall line syste is mature and well
developed(not shown) Between 0300 and 0400 UT@he zeroth and third moments of rain,
snow, graugel and hail are output every 10minutes Powerlaw relations between intercept

parameter and hydrometeor conteNt, = ¢W?, are derivedrom these outpuusing a least
squarefitting betweenthe logarithm ofN,, and W, following W14. Figure 3 shows the
scatterplot®f Ny, versusW, and the fitted relations between thetme slope of the dashed lines
defines the exponent of the powaw relation for each speciesThe coefficiens of
determination( R?) for rain, snow graupeland hail are 0.11, 0.070.44 and 0.11 respectively
For rain, Fig.3a suggests thahe new relations fitting data points spanning both convective and
stratiform rain;convective rain is characterizég small N,, and largew, while stratiform rain

haslarge N, and smakr W . While there are still quite a lot of scatter around ftitied

relations, thaldiagnosticrelations represent improvements over the fixed intercept pararnreters
this squall line caseThe rainwatercontentand number concentration in a vertical sla@ross
theforecastsquall lineat 0200 UTC ofCtrIDM (Fig. 4a)is shown in Fig4b. It can benotedthat

in the leading convective region (near 250 km in thezbatal axis) thewater content ifigh

(>1 g m3) but the number concentration is relatively low, indicating the presence of large rain
drops Behind the convection region 3t4 km height level is a region of moderate ravater
content(less ttan 1 g m®) but the highest values of number concentratoniesponding to the
stratiform precipitatiomegion The fitted line also indicates that there is a strong dependence of
the intercept parameter on water content, thiede is a threerderof-magnitude change in the
value of N,, based on the fitting. Apparentliixed N,, is not very appropriateFor squall lines

that contain both extensive convective and stratiform precipitation regions, this egsomlly
important, and perhaps more so than supercell storms that tend to be dominated by convective
precipitation.Significant slopes are also found for graupel, hail, and somewhat less for snow
according to Fig3. The fitted poweilaw relations ardisted in Tabled, and theseelations are

applied toEgs. (12) and (13) within our cloud analysisystem toobtainthe analyses of mixing

ratios and total number concentratioftem the reflectivity componentattributed to the
respective species.

b. Final analyss from cycled data assimilation experiments

As mentioned earlier, the cloud analysis system plasdrust on the radar observations
therefore replacs the hydrometeors found in the background with those retrieved from
observations. Because of ethdependency othe precipitation typeclassification on the
background temperature, there will be differences among the analyzed hydrometeor fields due to
the background differencdait the differences are relatively smallhe resultsfrom the final
analses of theexperimentghat assimilateadar data every 30 minutes starting at 2000 UTC
through 2200 UTC are presented in this sectida show the effecs of the enhanced cloud
analysisontheanalysis

Figure5 presentshe analyzedcomposite reflectity andthe wind vectorsat 2200 UTC
The wind in front ofthe squall linewas mainly westely but shifts to northwesterlybehind the
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squall line It should be noted that theflectivity differences arecaused by different reflectivity
formulas in the analysis and plotting stepss pointed out earlier, for the graphic plotting, the
reflectivity formula corresponding to thBeM MP scheme isusedto calculatethe analyzed
reflectivity; which may be different frorthe observed reflectivitysedin thecloud analysisln a
sensethe plotted reflectivityepresentshe reflectivity expected from the model state assuming
the DSD is what would be given by tieM MP schemeused by the prediction modelhe
composite reflectivity analyzed by ExpC, ExpD dadpDNG (Fig.5 b, ¢ d) is close to the
observedralues(Fig. 1a). For ExpS, theompositaeflectivity above 50 dB4s underestimated.

Fig. 6 shows the reflectivity bias score(shaded)from surface to 10 km MSL at 2200
UTC for reflectivity threshold betwveen 15 and 50 dBdverlaid withETS scoresBias score is
aboveor below 1, whenthe analyzed reflectivity is higher lower than theobservationExpS
(Fig. 6a) underestimatereflectivity at all thresholslabove4.5 km MSL. In ExpC, ExpD and
ExpDNG (Fg. 6 b, c, d ) the underestimatioare greatly reducedMajor bias only exists at
thresholdabove40 dBZ and abové.5 km MSL.

The reflectivity underestimationn ExpS (Fig. 6ajare caused bythe inconsistency in
reflectivity formulas used in the anasys (using MO equations) and the plotting (using MY DM
equations) stepsTo demonstrate this, we conduct a simidealizedtest which mimicsthe
cloud analysis procedure. We calculatading SMO, NOC and NOD schemes respectiviblg,
mixing ratios anchumber concentrations from a given reflectivilyegteda s an fAobser vat
After obtainingthe ianal yzedo mi Xi ng rati os smuldted numb e |
Aanal yzedo reflectivity using the @Mctviy¥ sche
between 15 dBZ and 65 dB&ith an interval of 1 dBZAnd air density assumed to be 0J63
m3The mixing ratio, number concentration and
Aobservedo reflectivity-cahows the lsimatm assummng e g . 7.
hydrometeor is rainwater. The rainwater mixing raina total number concentration from SMO
and NOC are identicdFig. 7a, b, ¢ green and blue line$hey aresmaller than thatrom the
NOD scheme (Fig. 7eed ling for refledivity below 25 dBZ andgreaterfor reflectivity beyond
25 dBZ SMO, NOC and NODschemaall producethe same analyzed reflectivitlyig. 7d-f show
the situation assuming the hydrometeor is in ice phase. For simplicity, in this idealized test, it is
assumd that hail is identified when reflectivity is 856 dBZ, graupel for 354 dBZ and snow

for 1532 dBZ.In SMO, the snow isconsidereddry snow when temperature is less thaiC0
and wet snow when temperature iswen 0°C and 5C . For wet snow, &raction of
reflectivity factor of the snow(0.2.Z,t. is the temperature ifC) is further treatedas the

reflectivity factor of ain. Both mixing ratios and number concentratiasfsdry (black dot line)
and wet snow(green line) are calculated and plotted in FigThere is only one equation for
snow in NOC and NODwet snow identificationis not ircluded. The mixing ratioand total
number concentratioaf the dry snowfrom SMO are the same abose ofNOC, but are lower
thanthose ofNOC for wet snowThe mixing ratios ofvet snow, graupel and hail from the SMO
scheme are all smallehan those fronthe NOD scheme for all reflectivitthresholds The
number concentrations from the SMO schemeatse smallethan those from the NOD scheme.
As a result, the analyzed reflectivity wlet snow, graupel hail from the SMO scheme are all
smaller than thosé&rom the NOD scheme. To conclude, the reflectivity biases in ExpS are
produced mainly because we use osfgectivity formula to retrieve mixing ratio while another
formula to simulate analyzed reflectivity fraimeretrieved variables.

The reflectivity bases in ExpC, ExpD and ExpDN& evidently reduced since the same
reflectivity equatios are used in both the analysis and the plottingsstEpe residual biasese
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caused by two reasons. Firgthorizontally ningpoint smoothers applied tahe analged model
variables before they are finalized; second, thesn upperbound whichlimits the maximum
hydrometeor mixing raticobtainedin the analysis.In an additional experiment whetbe
smoother and the lingtare removedthe reflectivity biases irExpC, ExpD and ExpDNG
disappear totallgfigures not shown hereThis isconfirmedin Fig. 7c. NOC and NOD schemes
yield exact 45slope lines in Fig. 7c. It means that in a situation without the smoother and the
limits, the analyzed reflectivity is exactly the same as the observed one.

To better understand the differences amtireganalyses using ti®MO, NOC and NOD
equationses, we further compare the mixing ragialongline A-B in Fig. 5a. In comparison
with the hydromeeor fields from ExpING, the area withless snow and ha#lbove the freezing
level in the convective regiom ExpD correspond to wére graupels analyzed based on the
graupelclassification.If reflectivity is between 32 and 41 dBZ and the ambient temperature is
below 0 €, the hydrometeowould beidentified as graupel in Expbather than snow as in
ExpDNG. If reflectivity falls betveen 41 and 54 dBZ and the ambient temperature is below 0 €
graupelis identified in ExpDrather than hail as iEXpDNG. Part of the hail in ExpDNG is
identified as rainn ExpD because the threshold of reflectivity to diagnoseibailcreasedrom
45 to 54 dBZwhen usinggraupel classificationGraupel exists inboth the convectiveand
stratiform regiors at heighs above 4.0 km. By using diagnostic relations, thmixing ratics of
snow and graup€Fig. 8 g, k) are greater thahoseobtainedwith constant intercept parameter
(Fig. 81, j). The maximum othelogarithm of total number concentrationgsenin the figure
for each hydrometeoThe maxina of humber concentrations of snow, graupel and fnam
ExpD arealsogreater than those from ExpS and Exp@th the wet snow classification within
SMO scheme, the rain mixing ratimmediately belowthe freezing level is greater asdow
mixing ratio is less tham NOC and NODIn generalthe new reflectivity assimilatioprocedure
produces better anals of the hydrometeomixing ratios and size distributionghich play an
important role in the dynamics ttie squallline. Previous studie§Gamache and Houze 1982
Houze and Churchill 198 5zeto and Cho 1994k; Bryan and Morrison 20)Isuggesthatthe
trailing stratiform region is primarily composed of ice ¢ays and snowparticlesthat are created
by the rearward transportation of the ice particle from the convective region. Melting of the ice
particles at the stratiform is important in driving thesoscalelowndraftand reaito-front flow.

The correct type®f ice particles and their size distributions are important to produce proper
structures of squall linesThe increased ic@article massand numberdrom ExpD seem to
improve the squall line prediction in the model.

c. Forecastdrom cycleddata assim#tion experiments

In this section, weaxamine thdorecastingresults fromexperiments ExB, ExpC, ExpD

and ExXpNG. From final analysest 2200 UTC 6 h free forecastare made.As mentioned
earlier, althoughthe cloud analysis system trust the radar olagems thereforgeplace the
hydrometeors found in theackground with those retrieved from observatjotiéferences
among the analyzed hydrometeor fietdfl existdue to the backgrountgmperature and water
vapordifferences. The difference in thesulting forecasts can however be much bigger due to
the differences in the background, and the accumulated effects of cloud analysis differences
within the cycles. For these reasong will focus on the comparison of forecasts amorepéeh
four cycledexperiments

Theforecastcompositereflectivity andthe wind vectoss at 0000 and 0200 UT@&replotted
in Fig. 9. For the forecasts at 0000 UT8mall areas oftratiform precipitation behind the
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leading convective region of the sdjuae start toappear as pointed tdy the black arrowBy
0200 UTC, an elongated region ddtratiform precipitationregionhas developed separated from
the leading line of intense convection bgl@arly defined transition zored weaker precipitation
The stratiform precipitation regian ExpS (Fig. 9b) and ExpC(Fig. 9d) is muchnarrower than
thatfrom ExpD (Fig. 9f). In the regionx= 800- 1100 kmand y =800 - 950 km, ExpD shows
evident stratiformprecipitation while ExpS and ExpC totally miss thesture.Crosssections
alongline C-D in Fig. 9b of observed radar reflectivigndthe four forecastsare shown inFig.
10. The physical variableshown in Fig. 10 are averagedcross a band df8 kmwide centemg
online C-D to improve representativeness all four experimentsthe cold poolss definedy
the-3 K potential temperaturperturtation (from the mean ahead tfe squall line)its contour
is about 3 kmdeepin the convective regianThe ascending fronto-rear (FTR) flowabovethe
cold pooltransports th@ydrometeorscross the system from the leadiedge convective line to
the trailing stratiform regiaorard rear inflow jet (R1J)enters the squall line from the rear below 6
km anddown into convective region under 3 kithe RIJ from ExpD is slightly weaker than
those from ExpS and Exp@ the regiorb0-150 km in horizontahxisand 35 km invertical axis
ExpD predics well-defined convection region, wide startiform region and a clear transition zone
(Fig. 10d), and have a better agreemend radarobservatios. ExpS and ExpCdo not show
separation between the stratiform and convegbrecipitation(Fig. 10b). Without graupel, the
forecast fronExpDNG (Fig. 10e) is slightlyworse than ExpD

The ETS scoresandfrequencybiasesfor predictedcomposite reflectivityat thel5, 30 and
45 dBZ thresholdschosen taoughlyrepresentheentire,stratiform and convective precipitation
regions respectively are shownin Fig. 11. In general ExpD and ExpDNGhave very similar
ETS scores throughout the 6 hour foregesiodat the 15 and 30 dBZhreshold, and they are
the highest for both thresholdsig. 11a,c) except fothefinal onehourfor the 30 dBZthreshold
(Fig. 11c). ExpSgenerally yields the lowest ET8mes for thel5 and30 dBZ thresholg but
gives higher ETS scored thefinal two hours at 45 dBZ(Fig. 11€). The frequencybiasesfrom
ExpD and ExpDNG arelosest to 1atthe 15 dBZ threshold For the 30 dBZhreshold the bizs
is close to 1 for all experimentswith those ofExpD and ExpDNGhaving the smallest biases
overall ExpSlargely underestimateih the first three hours of foreca@tig. 11d). For the 45
dBZ threshold, there is a significamterestimationn all four experimentsHig. 11f).

We furthercompare the forecasts againdth accumulate precipitation atthresholds of
0.5 6 and 10 mmh? (Fig. 12). More prominently than the refttivity ETS scoresExpD, ExpC
and ExpDNCclearly outperform th&xpSin terms of the precipitation ETS scores in the #rst
hours of forecast, and are only passed by ExpS in thetfimahour at the Gand 10mm h?
threshold The ETS scores d&xpD andExpDNG are very similar for the two smaller thresholds
(Fig. 12a, ¢), but the difference becomes clear for #8emm h! threshold(Fig. 12e), indicating
that the analysis of thgraupelcategory doesmprove the prediction of heavy rainfalBias
scores of ExpSueclosestto 1.0at threshold of 0.1 mrht. Compared to ExpC and Exp&e
biasesof ExpC andExpD are comparabléFig. 12d) atthe 6 mm h! threshold andclose to 1.
For the highest threshold, Expibtainedthe highest ETS scores and BIAS scores closest to 1.
Overall,ExpD produces the best precipitation forecast among the four experiments.

Overall, when we assimilate radar data for 2 bauth 30 minute interva usng our
enhancealoudanalysisscheme and combine it with prediction using a-ma@ment MP scheme
the stratiform region and transition zometerms of the simulated reflectivigrebettercaptured
and better precipitation forecast resmhenusingthe reflectivityequatiors based on diagnostic
intercept parameters, compared to usingSNKO reflectivity equations, and equations based on
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fixed intercept parameter (experimeikpC). The identificationand analysisof the graupel
categoryhelpsto further improve heavierrainfall prediction We see bigger separations in the
ETS and bias scores of hourly precipitation tliaose simulated reflectivity We think the
precipitationbased scores are more robust because the reflectivity calculation is strongly
sensitive to the reflectivity formula used. Also the hourly precipitation is accumulative while the
reflectivity is instantaneous; the latter is more sensitive to timing and location errors in the
forecast features.

6. Summary and conclusioms

This study enhances thexisting ARPS cloud analysis system for the assimilation of
radar reflectivity data, so that dan be used to initialize, in cycled and roytled modesbhoth
mixing ratios and total number concentrations associated avithublemomentmicrophysics
schemewhich contains both graupel and hail categari€éswards this goalthe diagnostic
intercept parameter approach is taken, where a diagnostic relation between the intercept
parameter and the hydrometeor contemtN,, - W,, is derivedfor each hydrometeor category

from model simulation output produced using aloublemoment microphysics scheme. This
approach is based on earlier studies that found strong relationships between the intercept
parameters and corresponding hydetaor contents, anthe fact thata singlemoment MP
scheme usingiagnosedntercept parameters could produce results similéinéacorresponding
doublemoment scheme.

New reflectivity equatiorsetis derived based othe diagnosticrelationsderivedandthe
gammaparticle/dropsize distributions.To be able toanalyze both graupel and hailtegories
from reflectivity data a gaupethail classification algorithm is implementedin the cloud
analysis systeno determine the dominant hydrometeor categlrgquall linethat formed on
23-24 April 2007 over southern Chirthat contaied classical leading convective lines atte
trailing stratiform precipitation regionis used to evaluate the impacts of #mwhanceccloud
analysis schemen the analysis angrediction of the precipitation structures and amount
associated with the squall linehe N,, - W, relationsusedwerederived fromabasdine double

moment simulatiorfor the same caseithout radar data assimilatiofgllowing the procedure
developed byv14.

To examinethe impacts of the enhanced cloud analysis systenthemnalyses and
subsequent forecasts, foexperimentusing different reflectivity equationsncluding the one
based on the diagnostic intercept parametgese caried out Those experimentassimilated
radar dataver a 2hour period at 30 minute intervals

The new reflectivityequationsetbased on diagnosed intercept parametaove the
stratiform reflectivity compared toradar observatios than the original reflectivity equations
using the fix intercept parameteFor initializing the MY DM PM schemethe new reflectivity
equation seprovides the DSDs expected from the DM MP scheme used by prediction model
which could produce the reflectivity closedbsevation The forecastsisingthe enhanced cloud
analysiscapturewider stratiformregiors and a more distnct transitionzonefrom the leading
convective line The shortterm precipitation forecasting skillis also improved Additional
experiments withouincluding the graupel category in the analysie conducted to show the
effects of adding graupethe hourly precipitation skill scores were improved for a higher
precipitation threshol¢>10 mmh™) when the graupel category is included.

In this studywe derivedthe diagnosticntercept parameteelations based on a balsse
simulation of the same caseith the same DM microphysics scheme used for the data
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assimilationand predictiorexperiments. The rationale for doitfgs is that to obtain reflentity
equations and a cloud analysis scheme that are as consistent with the DM scheme to be used as
possible, given the limited observational information (from radar the radial velocity and
reflectivity only). In a sense, this is similar to the ensembléniéa filter (e.g., Tong and Xue
2005; Xue et al. 2010) where correlation relations among different model state variables,
including those among total number concentrations and mixing ratios, are derived from an
ensemble of predictions using the same modéen the number of observed parameters is
much smaller than the number of state variables to be initialized, additional assumptions,
physical constraints, and/or information from a prediction model, have to be utilized to overcome
the underdeterminednesgroblem. For this study, we solve this problem by utilizing diagnostic
intercept parameter relations and hydrometeor identification algorithms within ssgnmical

cloud analysis system. This paper serves as af @mioconceptfor this approachwhile the
generality of the results and conclusowould require further testing with more casgsg.,
severeconvective storms, winter storms and stratifgracipitatior) andover different regios

The variability of the derived relations across di#fat casesaand how much therelationships
depend on the specific microphysgzhemesisedalso require further investigation.
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Fig. 1. Observed evolution of thapril 23, 2007southChinasquall linecasefrom 2200
UTC April 23 through0400 UTC April 24at 1 h intervak. The shadings composite
reflectivity; two convectivelines are denoted as L1 and L2 in.(b)
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Fig. 4 (a) Composite reflectivity and wingectorsat 1 km MSL at 0200 UTC April 24
2007 from CtrIDM, and (b)vertical cross section of rainvater conten{g m™) (color
shaded) and thiegarithm ofrain waternumber concentration (contoupngA-Ad in

(a).
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