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ABSTRACT

Extending an earlier study, theest trackminimum sea levepressur§ MSLP) data are
assimilatedfor landfalling Hurricane lke (2008)sing an ensemble Kalman filter (EnKFRi
addition to data from two coastgdoundbased Doppleradars at a 4 km grid spacing Treated
as asea levelpressure observatipthe MSLP assimilation by the EnKEnhances thaurricane
warm corestructureand resultsn a stronger and deepanalyzedvortex thanthat inthe GFS
analysisit alsoimproves subsequent tur intensity and track forecast

With a 2hour total assimilation window lengtithe assimilation of MSLP data
interpolatedto 10 minute intervalgesults inmore balanced analyses with smaller subsequent
forecast error growth angktterintensity and track forecasthan when the data are assimilated
every 60 minuteRadar data aralwaysassimilated at 10 minute intervals.

For both intensity and track forecastssiailaing MSLP only outperforns assimilaing
radar reflectivity (Z) only. For intensity forecast,saimilating MSLP at 10 minuteintervals
outperformsradar radial wind \{;) data (assimilated at 10 minute intervalsit asimilatng
MSLP at60 minute intervaldails to beat Vr dataFor track forecastMSLP assimilaion hasa
slightly (noticeably)larger positive impacthanV, (Z) data WhenV, or Z is combinedwith
MSLP, both intensity and track forecasts are improwede tharthe assimilation of individual
observatiortype

When the total assimilation windownigth is reduced to 1 hour or ledise assimilation
of MSLP aloneevenat 10 minuteintervals produces pooret8-hour intensity forecastthan
assimilating V only, indicating that many assimilationcycles are needet establishbalanced
analyseswhen MSILP data aloneare assimilated; this is due to the very limited pieces
information that MSLP data provide.

Key words: hurricanedata assimilation, ensemtifalman filter best trak



1. Introduction

Althoughhurricanetrack forecasthaveimproved significantly ovethe last two decades
hurricane intensity forecashg remains asignificant challenge (Cangialosi; Franklin 2031
Rappaport et al. 2000 The slow improvemenin hurricane intesity forecashg is believed to be
at leastpaitly due tolimited ability to initialize tropical cyclone (TC)vorticesaccurately in
numerical modelgRogers et al. 2006Convectivescale structurem TCs are believed tdvave
direct or indirect impact omC intensity and track forecasfFovell et al. 2009Fovell et al. 2010
Houze et al2007 Wang 2009.

Techniquedor initializing TC vorticesinclude vortex bogusinfg.g.,Kurihara et al. 1998
Pu; Braun 200)jland direct initialization of TC vortexybassimilating observations on the vortex
scale.Recently,a number of studies have demonstrated reasonable success assimilating airborne
or groundbased radar data for initializin§Cs, and these studies typically use ttleee
dimensional variationg3DVAR) (e.g.,Du et al. 2012Pu et al. 2009Zhao; Xue 2009Zhao;

Jin 2008 or ensemble Kalman filter (EnKR)e.g.,Dong; Xue 2012Weng; Zhang 2012Zhang

et al. 2009 methodsWhile theEnKF methodis atheoretically advanced methtitat makesise

of flow-dependenbackgrounderror covariancelerived from a forecastnsemble Dong and

Xue (2012, DX12 hereaftgralso found thatwhen starting from the GFS global analysis
backgroundt takes 5 to 6 EnKF cycles of 10 minutgervals assimilating full volume radial
velocity and reflectivity data from two coastal Doppler radérsbring the minimum central
pressure of a category 3 hurricane to within 5 hPa of the observed best traclEvatugith a

total of 13 analysis cycles at 10 minute apart, the final minimum pressure error remained at
nearly 5 hPaOften, the minimum central pressure in TCs is difficult to analyze accurately
without direct surface pressure observations.

Best trackminimum sea levepressurg MSLP) has been used as observational data and
assimilated into numerical models to help improve the TC intensity anatysigent research
studies Hamill et al.(2011) assimilatedhe secalled TCVital observationgvery 6 hoursising
EnKF in a global forecast model. HefECVital is a humansynthesizedlataset includinghe
best trackestimdaes of TC minimumcentralpressureand center locatio Despite cledy better
track forecastsf TCs in their study compared to operational benchmarks, the resolutionrof the
global model wadnsufficient to accurately predict the TC intensities; in fact, it was difficult for
the global model to maintain the initially @értse TCs initialized usingCVital datain their study
Torn and Hakim (2009 and Wu et al(2010 assimilated hurricane positions in real data
studies.Torn (2010 also assimilatedbest trackTC position andMSLP dataalong with other
conventional observatioresrery 6 hoursn a mesoscalenodel at36 kmhorizontal grid spacing
using EnKFE although the studylid not specifically evaluaé the impact of TC position and
intensity observationgarlier, in a proof of concept studghen and SnydgR007) assimilated
vortex intensityin terms of maximum vorticity usinBnKF in a simple 2dimensional barotpic
model and found improvement to the vortex intensity and track analysis and forecast. So far,
according to our knowledge, tAeCVital type of data has not been assimilated into a hurricane
prediction model at a clouaksolving resolutionwith or without radar datausing EnKF It
remainsan open questions to thekind of impact one can achieve wilfCVital data in such
situations.Most recently,Zhao et al(2012 performed an experiment assimilating MSLP data
into a convectiofresolving modefor a typhoonjn addition to groundased radar datasing a
3DVAR method;the impact of the MSLP assimilation was lost very qyickh less than 1 hour)
in their study due to the univariate nature of their analysihiade there was no temperature

1



analysis increment to balance to pressure increment in their anaBises. the multivariate
nature of the EnKF method, it is hopedttEmKF can do a much better job assimilating MSLP
data at the convective scale.

In this paper, thempact of assimilatinglSLP datainto Hurricane Ike(2008) using
EnKF is examinedThe best trackMSLP dataare assimilatedlone or in additiona the Doppler
radar datawith the configurationsof the EnKF radar assimilation being the same a®X12.
Therest of thispaper is organized as follows: section 2 introdube model, observationgind
EnKF experimensetup. The analysis increments and the chamgeehurricane intensitguring
the analysigyclesare presented and discussidsection 3The impacs of MSLP assimilation
on the intensity and track forecasts are discussed in secti®edults from sveral sensitivity
experiments ardiscussedn section 5and asummary is provided iregtion6.

2. The case, prediction nodel, observationsand EnKF experiment design

2.1Hurricane Ike and modekonfigurations

Hurricane lke (2008) is the third costlidahdalling hurricane in U.S history. It made
landfall nearGalveston, Texas at 0@ UTC September3, 2008 More details of ke near its
landfall can be found iIDX12. This study focusesn the analygs and forecastof lke shortly
beforeand after landfall.

The prediction modeused in this study ishe Advanced Regional Prediction System
(ARPS, Xue et al. 2000Xue et al. 2003a The physical domairs defined by &15x 515x 53
grid with a 4 km horizontal grid spacingA vertical grid stretching schemeith a hyperbolic
tangent functions used(Xue et al. 1995 the nmean vetical grid spacings 625 m and the
minimum vertical spacingis 50 m at the surface. Then et al. (1983 ice microphysis scheme
is used along with the :&rderTKE-based sulgrid-scale turbulence and PBL parameterizations.
Details on these physics options can be founXue et al.(2003h 2001). Other details on
physicsand computional options are the samethsse used IDX12.

2.20bservations

The best traclMSLP datafrom National Hurricane Centareassimilatecbetween 080
and 0600 UTC September 13 in firet set ofexperimentst intervals of eithet0 or 60 minutes
(Table 1) MSLP dataincluding thé values and locationst suchintervak areobtainedthrough
linear interpolationbetween times whebest trackobservations are availabl&he observed
MSLP valueschanged only slightlyvithin the two-hour data assimilation@{A) window. Radar
observatios are assimilatedlone or togethemwith the MSLP data in the experiments
investigatetheir relativeimpacs. As in DX12, radial wind (\f) or reflectivity (Z) datafrom two
coastal WSRB8D radas at HoustonGavelston, Texas (KHGX) and Lake Charles, Louisiana
(KLCH) are assimilatedalways at 10 minute intervas in this study Details on the radar
observationsind theirassimilation can be found MX12.

In this studywe treathe best traclMSLP data as regulasea levepressure observatien
locatedat the best trackortex center locatigrsimilar toHamill et al.(2011). A simplepressure
reduction equatiof Eq. (1) of (Benjamin; Miller 1990] is applial as the observation operator

for the sea level pressure:
+
P, =P (TOTQZ)Q/ i3
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where Py, is the sea level pressur, and T, are the pressure and temperatiréhe first model
level above the surfacez is the height of the firsmodel level, g is the environmental

temperature lapse rafiaken a®.8 K km™), g is the gravitational acceleraticandR is the gas
constantA bi-linear horizontal interpolation is used pooject the sea level pressudrem the

model grid onto the best track positionThe observatioal error of MSLP in the human
synthesizedTCVital dateset can range from 0.75 to BPa (Mingjing Tong 2010, personal
communication) In this studythe observatiorerror of MSLP is assumedo be 1 hPa smalkr

than 2 hPa used iHamill et al.(2011). The choice of the relatively small MSLP observation
error is partially based on the observation that the analyzed MSLP without MSLP data is always
positively biased (i.e., the analyzed hurricane is too weak) in this case, and a smaller MSLP

observationeor i s expected to O6pushdé the minimum pr
Also we note that frequent assimilation of time interpolated best track data has an effect that is
somewhat similar to the nudging nmtewardso tte, wher

observations or an analysis persistently over a time period. In our case, the model state is
constrained by the best track observations at multiple time levels through EnKF data assimilation.
Such frequent assimilation and the associated matjastments during the assimilation cycles

are expected to increase/accelerate the impact of the very limited number of MSLP data within a
relatively short period of timelhe model grid, the radar locations and radar data coverage are
shown inFig. 1, along with the best track from 0300 UTC Septenit3eto 0000 September 14.

2.3EnKF experimentdesign

Theenemble squareoot filter (EnSRF)f Whitaker and Hamil{2002 forms the basis
of our EnKF assimilation systenthe initial implementation of the EnSRF for the ARPS system
is described irXue et al.(2006 and he generation aénsemblenitial conditions followsDX12.

Briefly, the forecast ensemble is created by adding mesoscale and conseale/e
perturbations in two steps. In thestirstep, a single-Aour forecast is run frorthe analysis at
1800 UTC September 12f GFS (Global Forecasting Systemf National Centers for
Environmental PredictionNCEP interpolated to the 4 km model grichesoscale perturbations
are added to thd-hour forecastvalid at 2200 UTCin the entire model domain to create an
ensemble of 32 members. Thperturbations are created by smoothiGgqussian random
perturbations with zero mearsing a 2D recursive filtefPurser et al. 2003with a horizontal
de-correlation scal®f 100 km(see, e.g.Huang 2000Jung et al. 2012 The perturbations are
scaled to havetandard deviationsf 2 ms™ for u andv, 1 K for d and 1hPafor p. Forq,, the
relative standard derivation is 10% of the unperturbed value, to avoid excessively large absolute
perturbations at the upper leve@ther state variables are not perturbed in this Sephour
long ensemble forecastse then carried outfrom these peurbed initial conditions talevelop
evolved background error covariarsteuctures on theesoscale.

In the second step, at 0400 UBEptembef3, additionalconvectivescaleperturbations
with a smaller horizontal deorrelation scale of 12 km and a verticataterelation scale of 4
km areadded to the ensemble forecast fields, but only in regions where observed Z exceeds 10
dBZ. These perturbatiorare created by applying &fth-ordercorrelation smoothing function
after Tong and Xu&2008. The standard deviations are 2 Trfsr the wind components, 2 K for
d, 10% forq,, and 1 g kg for all microphysical variables. The perturbations were found to
yield bestanalysis and forecastsultsfor the Ike caséhrough many assimilation experimemnts
DX12 and are therefore used haiso.



The lateral boundary conditions are froine 6hourly operational GFS analysesth 3-
hourly forecastinterleavedn between, available on the 0.5 degree grlteylarealsoperturbed
by adding mesoscale perturbatiameatedn the sameavay asin step one Within ARPS, linear
time interpolations are performed between the boundary condition times.

In the first set of experiments (Table W)SLP and/or radar observations assimilated
in a 2hour window from 0400 to 0600 UTGeptembel.3 2008 whichis the same as iDX12.
After the assimilation, an Bour deterministic forecast iscarried outfrom 0600 UTC
Septemberl3 to 0000 UTC Septemberl4 from the ensemble mean analysis a control
experiment CNTL) used for reference forecastof the same lengtls started fromGFS 0600
UTC analysiswithout any additional radar or MSLP datachematics fothree experiments,
corresponding tovrP10W2h/ZP10W2h, VrP60W2hZP60W2h, and CNTL inTable 1, are
shown inFig. 2. Table1 gives afull list of experimentsin the experimeninamesVr, Z, andP
denotethe assimilation of/,, Z, and MSLP data, respectiveMumbersil00 andfi600 following
P in the names indicatine time interval(in minutes)at whichMSLP data are assimilated’he
number followng W denotes théotal length of assimilation windown houts or minutes|n all
cases, radar data assimilation interval is 10 Ror. examplejn experimentVrP10W30m V,
and MSLP dataare assimilated together Wit a30 minute assimilation windowat 10 minute
intervals.

Covariance inflation and localization aapplied in the EnKRo alleviate the effects of
samplingand other sources efror(e.g. model errorsyithin the ensemble assimilation system
A horizontalcovariance localization radius of 300 kmused for MSLP assimilatiowhosen
roughly based othe size of the background vortex. Since there is onlyMBEP observatiorat
the analysis timandthe MSLP is a vortexscaleparametera largehorizontal localizatiorradius
is reasonablé¢o ensure that the impact of the MSLP assimilation extémdise entirevortex. A
vertical localization radius of 10 krfor MSLP is determined to be close toeing optimal
through a number of sensitivitgxperimentssuch aradus is reasonable because the surface
pressure is directlyinked to temperature perturbations in the tropospheric air coluhtre
localization radius foradarobservations is 12 km horizontally and 4 km vertiga#lg used in
DX12 and are consistent with earlier studies of stesgale EnKF radar data assimilatiQlung
et al. 2008 Tong; Xue 2008 Prior multiplicative covariance inflation of 5% mpplied tothe
state varileswithin the regionsnfluenced(through EnKF updating)y theradar and/oMSLP
data Posterior additive covariance inflationapplied tothe state &riablesin regionscovered by
assimilatedadar observationshe magnitudeof the additiveperturbations@rethe same athose
used inDX12. In experiments assimilating both radar and MSLP, radar observations are
assimilated firstandMSLP data secondlrhose state variables having the strongest dynamic link
to the MSLP observation, includingimd components, potential temperature and pressuiee
updated byMSLP. The updating ofstate variables by radar observatiods &ndor Z) follows
DX12. The reflectivity data are used to update only pressurghamdixing ratics of cloud water
(90), ice @), rain water @), snow (Is), andhail (g,) while the radial velocity data update all of
the eleven state variables, i@.y, andw, potential temperaturg, p, mixing ratioof water vapor
ov, and allmicrophysical variablesDX12 found that such settings yielded the blestricane
analysisand forecast

As foundin DX12, whenevelV, is assimilatedogethemwith Z, theanalysesand forecast
are very similar to correspondingexperimentsassimilating V only. Thus, br brevity,
experiments assimilimg bothV, and Zare not Rownin this paper



3. Impact of MSLP observationson hurricane analysis

3.1Analysis incremerd

Thewind and potential temperatuamalysisincremens are plottedn Fig. 3 for P6OW2h
at 00 UTC September 13ne first time that the MSLP data is analyzed in this experiment; it is
to illustrate the impactof assimilathg MSLP observation The incremenis defined as the
differencein the state variables before and afitee assimilation ofMSLP observationFig. 3
shows that fier analyzingISLP observationa strong cyclonic circulatiomcrementaround the
MSLP data locationB in Fig. 3a) is evidentat 1km above thanean sea level (MSLFig. 3a),
indicating an enhancement tohe backgroundvortex that was too weakThe center of the
incrementcirculation is not coelocated with he background vortex centetetermined by the
background minimum sea level press(#en Fig. 3a), suggestinghatthe assimilation of MSLP
observationis trying to change thevortex centerlocation also The results suggest théte
covariance between thpressureand wind fieldsderived from the ensemble is providing
important information t@nablethe MSLP datato properly influence the wind fields in the EnKF
resulting in dynamically consistent multivariate anagygereduction inpressuras also notect
1 km aboveMSL in the vortex regionas shown by the pressure incremenfig. 3a. The
reduction is greater tha© hPa aboveéhe MSLP location anddecreassoutward.

The analysis mcremeng of potential temperaturat 1 kmaboveMSL areplotted inFig.
3b. While the potential temperaturéncrement pattern is more complex thathe pressure
increment patterrthe increments are all positive in the vortex regierh a maximumvalue of
about5 K at this level, indicatinghatMSLP dataassimilation hastrengtheadthe warm coref
the cyclonePositiveincremens of potential temperaturexeendupwardto the mid-troposphere,
with a 1 K increment athe 5 km level abovethe MSLP datalocation (Fig. 3d). The 10 km
vertical localization radiusisedallows for the enhancemento the warm corein a deep layer
Increments of wind, pressure and potential temperag)enerally decrease with height (not
shown) as expectedbut they doreachthe mid-tropospherg indicating rather deep vertical
correlation between surface pressure and these variables.

Vertical velocity(w) analysisncremens, representing change regions ofupdrafts and
subsidencare plotted along withthe backgroundavind vectorsin Fig. 3c, for a verticalcross
section through théorecast backgroundortex center(A in Fig. 3a) andthe MSLP observation
location (B in Fig. 3a). The positive incremest of w reflect the enhancement of updraft
surroundingthe MSLP location Since the northwest quadrant of the vortealreadyover the
land at this timeso thatthe vortex in that regiohas startedb weaken, the positive incremeraf
w are broaderand strongeon thesoutheast sidéright of B in Fig. 3c). Thereis aregion of
negative incrementinside the eydalmost directly over B, the lation of MSLP observation)
suppressing the weak updrédund in the background vortex (as indicated by the wind vectors)
and correctly establishing descending motion in the eye regidhe increments in temperature
and wind fields are physidglreasonablethey are consistent with the fact that the background
vortex was too weak, and the decreased central pressiirknataltitudeby the MSLP datas
accompanied bgnhanced warm cor@nd eyewall updraftaswell asdownward motion in the
eye region.

3.2Impactof MSLP data on hurricane intensitgluring the analysis cycles
To investigate the impact &fISLP dataon the analyzed hurricanentensity during the
assimilation processhe MSLP valuesof the analyzed hurricartgefore and after each analysis
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are plottedin Fig. 4. The best trachMSLP data ardinearly interpolatedto 10 mirute interval
analysis time for comparisonIn our study theMISLP value at each timé assimilated as a
regular surface pressure observatiocated at the best track vortex centehile the MSLPIn
the analysis is determined from the analyzed mean sea level pressure fields aathlyzed
MSLP is not necessarily at thest track vortex center

We first examine the forecast and analysis MSWRen only MSLP data are assimilated.
WhenMSLP observations arassimilated at 60 minutatervak in P60N2h over a 2 h window
(at hour 1 and 2 into the windowthe analyzedSLP decreaseby about 14 hP#&o 957 hPa
during thefirst analysisat 0500 UTC September 1(Fig. 4a). In the forecast over the next hour
without additional data assimilatipthe modelMSLP increaseso 964 hPay 0600 UTC.The
secondanalysisof MSLP dataat 0600 U C reduce the modelMSLP to 954 hPa, 3 hRagher
than thebest track observation

When MSLP is assimilatedat 10 minute intervalen PLOW2h, the analyzedMSLP is
decreasetty more than 10 hPduringeach ofthe first two analysis cycleig. 4b). Overthe 2-
hour assimilation windowthe assimilationof MSLP alwaysreduceshe analyzedSLP andthe
magnitude of reduction decreases gradualti cycle as the model MSLP becomes ctdsdhe
observed valueg§ here isalwaysan increase iMSLP in theensung forecast but the amount of
increase decreases with the number of cycles, suggesting an increasing level of consistency
among model state variables as the model state is continually adjusted through theAtycles
0520 UTC, theanalyzedMSLP actually becomes ~2 hPa lower than observed value interpolated
to this time Since theanalyzed MSLFs not necessarily at the same position as the MSLP
observation, this "ovetorrecting”" behavior irP10W2hat 0520 UTC ispossible because of
unreliable spatial covariance causing undeooting of analyzed pressure away from the MSLP
data locationAt the end othe assimilation windoythe analyzedMSLP in PLOW2h is almost
exactly the same as the best track valusoaghly 951 hPaTherefore frequent assimilation of
MSLP observationsaat 10 minute intervals is able bmprovethe intensityof the model TGn
terms of MSLR making it toapproactthe best trackntensityafter 6 assimilation cycles.

Next, we examine the cases when Vr data assimilated alone, or together with MSLP
data.In experimentVrwW2h that assimilates Vr data only at 10 minute intervals,M&LP is
reduced by about 5 hPa in the first analysis at 0410 UTC, while in later cycles the decrease by
analysis is small andcoasionally negative (e.g., at 0430 UTC). Much of the MSLP reduction is
achieved during the forecast step in the earlier cycles, indicating that the model pressure field is
adjusting to the improved wind field, not surprisingly because of the assimilattianlarge
number of Vr datgFig. 4a). In VrP60W2h, the addition of MSLP observationat 05@ UTC
furtherdecreases thSLP by aboutl hPacompared td/rW2h (Fig. 4a) butthe impact is small
in the ensung cycles At 0600 UTGC the secondassimilation of MSLP dataresults ina final
analyzed MSLP in/rP60W2hthat is about 2 hPa lower than\inwW2h. Therefore the impact of
assimilating MSLP data at hourly intervals when Doppler radial velocity data from two radars
are assimilated at 10 minute inteiyah terms of the analyzed MSLRB,minimal in this case.

In VrP10W2h, the MSLP data are also assimilated at 10 minute intervals together with
Vr datg the analyzedSLPs are always lower thdhose ofVrW2h, and MSLP errors generally
grow slowerduring the forecast steghanin P10W2h(Fig. 4b). In VrW2h, the surface pressure
reduction is achieved almost entirely through model adjustment while in VrP10W2h the
assimilation of MSLP provides direct help; resulting in muclefagressure reduction and more
accurate final analysis of MSL(Fig. 4b). In PLOW2h, while the MSLRs reduced similarly as in
VrP10W2h, theerror growth ismuchlarge in the forecast steps, especially during the earlier



cycles this is because of the larger mutual adjustments among the pressure, wind and other state
variables when no other direct observations were assimilated.

We now look at the cases when(idstead of Vr)data are assimilated alone or together
with MSLP dataln experimenZW2h, the model MSLP is changed little by the Z assimilation
before 0540 UTFig. 4a). Reductions of 20 3 hPain MSLP are achievedn thelast three
analysiscycles likely a result of improved crosscovariance betweethe microphysicaland
pressure fieldsn the ensembléas discussed iDX12). In ZP60W2h, MSLP is assimilatedat
0500 and 0600 UTCat 0500 UTCan additional MSLPreduction of14 hPa is achieved by
assimilatingMSLP data(Fig. 4a). While thestormweakens quicklyo approximately 963 hHRa
MSLP during the subsequent0 minute forecast the MSLP in the forecasts muchlower than
that ofZW2h, and remains so until the end of the assimilation windBetween 0510 and 0600
UTC, the assimilation of Z data every 10notes causevery little change to MSLP, and it
remainsmore or less constardf 0600 UTC, thesecond analysis dISLP data further reduces
the minimum pressure by IfPato reach 953 hPa, only 3 hPa higher than the observed. Still,
relatively rapid errogrowth in the subsequent forecast is expected with the very limited number
of MSLP analysis cycles in this cashis fact willbe discussedurtherlater.

The MSLP valuesin ZP10W2h are vergimilar to thoseof PLOW2h before 0450 UTC
(Fig. 4b). In the lasfew cycles,the analyzedMSLP in ZP10W2h s close to that ofbest track
andslightly higherthanthat ofP1L0W2h. ComparingZP10W2h and P10W2lthe assimilatiorof
Z in addition to MSLPdoes not seem tlurther improve the intensity analysis. Durisgme of
the cycles (e.g. 0450530 UTC),the analysis and forecast MSLP Z#10W2hare slightly
worsethan PLOW2hwhile in some other cycles (e.g52ZD UTC), P10W2h over analyzes the
intensity somewhatBut in general, theassimilationof MSLP data every 10 minutes with and
without Z dataresults in analyzeMSLP values that are close to the best track data after several
analysis cyclesHig. 4b). Given the apparent effectiveness of MSLP data in analyzing the
minimum surface pressure of a hurricane, does it mean that we no longer need radar or other
types of highresolution obsentaons? We will examine the analyzed hurricane structures next
which will help answer this question.

3.3 Analyzed hurricanestructures

Fig. 5 shows the \wnd, sea levepressire, and temperature fields GFS analysisand the
final EnKF analyses o¥/rw2h, P10W2h and VrP10W2hat the surfaceand inthe westeast
vertical crosssections through the individuabrtex center of each experimerior brevity, only
experiments with MSLP assimilated every 10 minutes are shown\WgfeV, datafrom two
coastal radars assimilated, therricanein Vrw2h (Fig. 5c,d) is muchstrongerthan thatin the
GFS analysigFig. 5a,b) with bothlower center pressure and larger radial pressure grathient.
all three DAexperiments, and in the GF8alysis, he maximum wind is always ohe east side
of thevortex The vortexof VrW2h is much deepethanthat ofthe GFS analysjsas showrby
the strong wind exceeding 48 m extendingto 6.4 km vertically (Fig. 5d). The maximum wind
in VrW2h is goproximately59.5 m &, which ismuch larger thathe44.5 m &'in GFS analysis.
The warmcore is alsanuchstronger and deeper VrwW2h than inthe GFS anlgsis. When Z is
assimilated inZW2h, the final analyzed storns alsostronger thann the GFS analysjsbut
weaker tharmn P10W2h(not sltown here cf. DX12 Fig.6b, { j).

In P10W2h the minimum cental pressure is even lower thamVrw2h (Fig. 5e). The
wind field of P1®V2h, having amaximum of 55.7 m§ is stronger and deeper thtrat of GFS
analysis but weaker thathat of Vrw2h (Fig. 5f). Strong winds of greater thad8 m s extend to
around 36 kmabove the surface IR10N2h (Fig. 5f), shalower thanthat in VrW2h (Fig. 5d).
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The warm coren P10W2his stronger tham the GFS analysisbut not as deep as Vrw2h. It
is clear that the assimilatioof MSLP data is moreffectivein reducing the surface pressure
while the assimilation of Vr data is more effectively in establishing the strong vortex circulation.

The analyzedminimum centralpressure olVrP10W2his closeto that of PL0W2hand
lower thanthat of VIW2h (Fig. 5g), and its vortexs stronger and deeper themVrw2h with a
maximumspeedof 61.7 m § andthe region withwind speedexceeding 48 msextendsto 7
km above the surfac€rig. 5h). The warm core iWrP10W2his as deep as iWrW2h. In
ZP10W?2h the final analysis is similar 810W2h(not shown).

The right column ofig. 5 also shows the temperature fields in the vertical cross sections.
It is clear thatVrw2h (Fig. 5d) and VrP10W2h Fig. 5h) produce more realistic wargore
temperature structures than in P1LOWZ&Hhg( 5f); this is perhapsnot too surprising because
MSLP data do not directly provide information on the vertical structures of the hurricane.

In Fig. 5, thevortexstructurein P10W2h appearn®lativelysmooth by comparisonmore
convectivescale structuresare analyzedwhen V, observationsare assimilatedand such
convectivescale structuiecan be important for the hurricane predictidime asimilation of
MSLP does help strengthen the vortealthough it teds not to introduce convecthseale
structures When both types ofobservationsare assimilated togetmethe hurricane acquirea
lower central pressureand stronger and deepe&ortex circulationghanwhenV, or MSLP are
assimilatedndividually.

Individual crosssectionshown earliemay not be representative of the vorssucture
Azimuthally averaged raditiseight windfields and temperaturanomaies of the final analysis
at 0600 UTC are plotteih Fig. 6, together with those of the GFS analy3ike azimuthamean
horizontal windsin all three DA experimentare substantiallystronger than those the GFS
analysis.In P10W2h the maximumazimuthaimeanwind exceedt2 m $' while themaximum
temperature anomalg over12°C and is located at 1 to 2 kabove the surfacg-ig. 6e, f). The
latter verystrongtemperature anomalyenteredn the lower tropospheras not consistentvith
commonly observed or simulated structures withins TEmanuel 2005Wang 2002 where
largestanomalyis usually found at the mittoposphereWith MSLP data being the only data
source in this case, the vertical spreading of observational information depends strongly on the
spatial error covariance, which tends to be less reliable than direct observations; this may be the
reason forthe unrealisically-strong warm corat the low levels founth P10W2h In VrwW2h,
the horizontal wind fieldhavemuchlarger horizontal gradienta theeyewallregionthan inthe
GFS analysiswith roughlyverticalisotachan the eyewall ané maximum windof over 8 m s
! (Fig. 6¢, d). Themaximumtemperature anomalg about6 °C andis located at 8 km above
the surfacea structure that is more consistent with typmaserved TC structures VrP10W2h,
the structures ofhorizontal winég and temperature anomadre similar to those ofVrw2h,
except thathe region with wind spesdexceeding 42m s' is about2.5 km deeper thain
VrW2h (Fig. 6g, h). In general, the assimilation of Vr and/or MSLP data significantly enhanced
the axisymmetric vortex circulation and warm core structlihe vortex structure@btained by
assimilating Vr datas more realistichan assimilating MSLP onlgind assimilating both Vr and
MSLP data gives the strongésirricanevortex.

3.4 Sensitiviy tomodel variableupdating in EnKF

During theassimilation ofMSLP, the model stateariables pressure, windnd potential
temperature are updated/e examinehere how the impacst of state variableupdatingevolve
with time, which will help us understand which model variabk® most important in
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maintainingthe stormstrengthduring the aralysisforecast cyclesind how the model adjusts to
the updated fields in the subsequent forec@sivards this goal, a set of experiments is
performed based on experiment P60W2h. In these experiments, MSLP assimilation is performed
at 0500 UTCusingthe ensembldorecast background ¢t60W2h but each experiment updates
only a single or a subset of state variabk20 minute forecags launched from the ensemble
mean analysis from each of the experiments, which will be compared to the forecaksedaun
from theensemble mean forecast at 0500 YJ&Esentially from the analysis backgrouvithout
further DA. The model variable updated BYSLP is indicated bythe experiment name: e.g.,
ExpT only updates potential temperature while EXpMpdate wind, potential temperature
(@) and pressurélhe minimumvalueof surface pressure differenbetween the contrdbrecast
andthe forecastsvith MSLP DA (Surface pressuifcaswith pa- Surface pressurcaswithout DA )
is used as dpressure impaadndex (P)o to measurdghe impact of DA on themodel surface
pressureA morenegativePl indicates ayreater impagt.e., the forecast storm is stronger

ThePlIs oftheexperimens are plotted irFig. 7 at0, 10 and 20 minutesfter the DA time
At the initial time (0500 UTQ, the PlIs of the experimentswhose pressure is updated by the
MSLP data(ExpP, ExpTP and ExpWTP) are all abctid.3 hPg but arezem in all other
experimentsgincethe pressures not updated)After 10 minutef forecastthe large impact on
pressuren ExpPis decreasetb a mere0.3 hP3g and to-0.15 hPa by0 minutesindicating that
the initial impact from MSLP DA is almost completelylost in this case Clearly updating
pressure only when assimilating MSLP data is ineffective; this is consistent with the results of
Zhao et al(2012 where unianate analysis of the MSLP datasingthe 3DVAR methodwas
also found ineffective.

The Pls of ExpW and ExpT increasefrom zeroat the initial timeto -5.1 and-2.3 hPa
respectively at 10 minutesof forecast clearly due tothe adjustment oimodel pressure to the
wind or potential temperaturfeeld updated by the MSLP datdpdatingthe modelwind field
appears to havalarger impacthan updating) on theforecastpressureBy 20 minutes, the Plof
ExpW increases slightly (more negative) ilehthat of ExpT decreasgslightly, but the changes
are less thad hPain both casedUpdating both wind and in ExpWT leads tca more negative
Pl during the forecaghan updatingvind or g individually, giving Pls of-6.7 and-6.9 hRa at 10
and 20 minutesf forecastrespectivelyand these values are very close to those of ExpWTP. At
the same time, the PIs of ExpTP and ExpT are very similar at the correspondingFigm&$ (
while the Pls ofExpWP (not shownarevery similarto those ofExpW. These results indicate
that even though MSLP contains pressure information, the updating of wind and temperature
fields when using the data is much monportant than updating pressure itself; in fact, updating
pressure itself has little impact on the subsequent forecasting with or without updating other state
variables; the improvement to the analyzed MSLP is in a sense superficial in absence of support
of other state variables. In the model, the pressure field adjusts quickly to the temperature and
wind fields, apparently through hydrostatic and gradient wind balance adjustments. Such results
also point to us the importance of crassiable covariancderived from the ensemble, which is
responsible for the EnKF updating of state variables rather than pressure when assimilating the
MSLP data.



4. Impact on forecast

4.1Intensity forecast

The 18-hour forecast MSLPdor all DA experiments are plotted iRig. 8, alongwith
those ofCNTL forecast,andthey arecomparedo the best tracklata The best trackMSLP is
951 hPa at 0600 UTSeptember 13one hour beforeandall; after landfall the MSLRyradually
increasesand it is 980 hPaby 0000 UTC September 1&ig. 8). Overall, all of the DA
experimets prediciower MSLPsthanCNTL before 1800 UTCThe slower weakeningbetween
1500 to 2100 UT@ompared tdhe best tracknight be aresult ofmodel errorsX12), leading
to somewhat tostrong storms after 1800 UTC.

The MSLP ofP60W2hat 0600 UTC is around 955 hPa, slightly lower than that of
VrW2h (Fig. 8a). However,the MSLP of P60W2hincreases much faster thdre best track and
VrW2h during thefirst 3-hour forecastandis 5 hPahigherthanVrWw2h at 0900 UTC. During
the following forecast,the MSLPs of P60W2hare always higher than those ofVrW2h. The
MSLP of VrP60W2his 2 hPalower thanthat of Viw2h at 0600 UTC but become similar
afterwardsWhenZ is assimilatedn additionin ZP60W2Hh the final analyzed MSLP wslightly
lower thanin P60W2hbutthe predicted MSL® become similaafter 0900 UTC.

With MSLP data assimilated every 10 minutasPilOW2h(Fig. 8c), the final analyzed
MSLP isquiteclose tothe best trackThe predicted MSLHEs similar to thatof Vrw2h after 0600
UTC, and ishigherthan the best track befod800 UTC.AIl three experimentassimilating
MSLP at 10 minute intervalsare quite similar tmne awther, with difference in MSLPbeing
always smaller than 2 hPatartingwith aslightly higher MSLPthan the other twat 0600 UTC
the intensity forecast ofrP10W2hduring the 1&our forecastis generally the best among all
the DA experiments conducted in this stuidlyerms of MSLP

It appears thathe assimilation ofMSLP at 60 minutdantervak is insufficientto establish
a strong, well-balancedhurricane MSLP error in P60W2hincreases quicklyduring the first
severalforecasthours More frequentMSLP assimilatiorat 10 minuteintervalsleads to anore
balanced vorteandslowererror growthduring subsequent forecast

The assimilation ofMSLP at 10 and 60 minute intervals in addition to data
significantly improves the intensityorecast ofZW2h. Sincethe MSLPforecast ofVrW2h is
already close to the best tradktequentMSLP assimilationat 10 minutantervak is necessary to
achievefurther noticeable improvement

The maximumsurfacewinds of forecasts in thexperimers are plotted inFig. 8b and
Fig. 8d, andarecompared to thse ofbest trackAt 0600 UTC, the analyzemshaximum winds of
theexperiments assimilatingqdar and/or MSLBataareall strongerthanthose ofCNTL, except
that of ZW2h which is similar Experimentsassimilatingboth \ and MSLP(i.e., VIP60W2hin
Fig. 8b and VrP10W2hin Fig. 8d) always have the strongest analyzed maximum wind
indicating the benefit of assimilating both Yand MSLPobservationsAlthough theanalyzed
maximum windg in P10W2h and ZP10W2are weaker tharthosein P60W2h and ZP60W2h
respectively, thdorecass of P10W2h and ZP10W2at 0900 UTCshow stronger winds than
thar counterpad assimilating MSLP at 60 minute intervals. This is more or less consistent with
the MSLP forecastswhere the assimilation of MSLP at 10 minute intervals helps to build up a
more dynamicallybalancedvortex, and the impact fronbbA lasts longethanwhen MSLP is
assimilatedat 60 minute intervalsgGenerally, the maximuraurfacewind forecasts are close t
one atherin all experimentsafter 0900 UTC. We notderethat the maximum windan be
affectedby localzed convective activities whilehe minimum sedevel pressurgends tobe a
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systemintegrated quantityhattends to bea more reliablemeasure othe vortex intensitfZhu;
Zhang 200k

In conclusion, wth frequentassimilationof MSLP datain a cloudresolving model
hurricane intensityforecastcan beimproved such improvement wasot clearly achievedin
Hamill et al (2011) when assimilating th&CVital data intoa coarseresolutionglobal modéat
a much lower frequencyThe high assimilatiorfrequerty is necessary t@chieve sustained
impacts

MSLP assimilation aflO0 minute intervals outperformd/, assimiation in terms ofthe
MSLP forecastThe MSLP parameter measures mainly the overall vortex intensity, but does not
necessarily represent well subrtex convectivescale structurein a hurricaneFor this reason,
we further verify the wind forecasts 6NTL, Vrw2h, P10W2h andVrP10W2hagainstthe V,
observatios from the two coastalradarsfrom 0600through 0900 UTC when Ike was near the
coast The rootmeansguaredifferences (rmsd) betweanodel predictecand observedV, are
plotted inFig. 9. Such calculations were limited to regions where observed reflectivity exceeds
10dBZ.

All DA experiments show clear improvement over CNTL when verified again§Eigr
9). The rmsd against KHGX radar in CNTL grows dpipartly because the vortex GINTL
movesslower than the best traed other DA experimentsom 0600 through 0900 UT(ig.
10a). The rmsd values fovYrW2h are 34% and 60% othose forP10W2hat 0600 UTCwhen
verified againstKHGX and KLCH radars,respectively(Fig. 9). The VrW2h analyss fit the
observedV, data reasonablyell, whereas theanalyzedwinds assimilatingMSLP data only
match the observed, data much worseAfter 2 hoursof forecast,the rmsdvaluesof VrW2h
and P10W2h become closas thermsd of P10W2h descreases with time while that of Vrw2h
increases with timetheir differencesareless tharl m $'by three hours foboth radars These
indicate that wind errors are reduced durihg forecast as the wind field adjusts to improved
vortex due to MSLP DA, while wind errors that were reduced by the assimilation of Vr data
increase athe forecast error grows in general.

In a short range forecast3 hours in our studythe assimilatia of radarobservations
appears to have amdvantag overthe assimilation ofMSLP observationson the convective
scale(as observed by radar dat&@pmbinng V, andMSLP data clearly gives the best results.

4.2 Track forecast

Fig. 10 showsthe predicted tracg along with the best track and average track sradr
18-hour forecast$or selected experiment¥he forecasvortex centempositionsare determined
by the mininum sealevel pressure andreplotted every 3 hourPespite havinga small initial
position errorof just 7 km, CNTL follows thewesternmost trackluring the 18hour forecast,
diverging from allof the DA experiments and the best trgéhg. 10a). Thefinal analyzed vortex
centerdan the experiments assimilating MSL&tegenerallycloser to the best track thémose of
CNTL and the experiments assimilatiraply radar ®servations. The errerin P10W2h
VrP10W2h and ZP10W2hare 4, 4 and 2.6 kmrespectively comparablgo (or even smaller
than the horizontalgrid spacingof the model During the 18&hour forecast, the tracks of the
experimentsassimilatingMSLP aresimilar toeach otherexcept forZP10W2hwhich followsa
morewestward patlat 1800 UTC.

Averaged over the 1Bour forecasperiod the track errors dP60W2handP10W2hare
generally comparable tinose ofVrw2h (Fig. 10b); the meanerror of P60W2his 2 km larger
thanthat of PLOW2h The track errors of alhesethree experimentare significantly smaller
thanthe 41 km track errorof CNTL (not shown inFig. 10b). Thetrack erros of VIiP60W2h and
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VrP10W2h are both less than 10 km, smaller ttheel2 km error of VrW2h. The track errors
ZP60W2h and ZP10W2h are only 6Q86the error ofZW2h. WhenMSLP is assimilated with
radar observationshe interval of MSLP assimilatiorlQ vs. 60 minute¥ does not have a strong
impact on the trackthe differenceis always smaller than 1 kmin general most of the
experiments assiihating MSLP observationsiave average track erswf less than 10 km.

Unlike intensity forecast, the track forecagbpears to beelatively irsensitive to the
MSLP assimilationinterval This may be because the initial position errors can be quite
effedively corrected in a few MSLP DA cycles, while intensity improvement requires more
frequent assimilation cycles to O6nudged and
intensity.

5. Sensitivity of intensity forecastto assimilation window length

In the previous sectionave have showthatduring theearlyanalysisand forecastycles
the MSLP error grows much fasterin P10W2hthanin VrW2h althoughthe error growtlrate
decreases with time P10W2h(Fig. 4). Clearly, manyMSLP DA cycleshelp establish a more
balanced vortexo slow down the error growth in surface pressimethis sectionwe further
examine the impact of assimilation window lendtistead ofthe 2 hour assimilation window
usedin previousexperimentsl houror 30 min assimilation window is used, aldng at 0600
UTC, and all of them assimilat]ISLP and/or \{ dataat 10 minuteintervals.Fig. 11 shows
predicted MSLPdor the experiments using the three differamdow lengtls, ascompared to
the CNTL forecast and best traclata

With a 30 minute windown P10W30m the analyzed MSLP at 0600TC is 953 hPa,
close to the 950 of best track;imcreasedy 7 hPa inthe first3 hours of forecast the largest
among all experiment$={g. 11). In VrW30m, even though the final analyzed MSLP is about 3
hPa higher at 0600 UTC than that in P10W30m, the forecast MSLP at 0900 UTC is actually a
couple of hPa lower than in P10W30m, arcthains lower throughout the 18 hour forecakie
assimilation of bottMSLP and V; in VrP10W30mresults in aMSLP analysis of about 951 hPa,
and the forecast values remain a few hPa lower than those in PLOW30m and VrWw30m, closer to
the best track valuestearly assimilating both Vr and MSLP data gives better intensity forecasts
than assimilating one of them

Whenthe assimilation windows extended to one houhe general behaviors of the three
experiments are similar to the 30 minute case, excepthba¥IELP errors are further reduced
by 1-3 hPa in the analyses and forecalstscomparison, Wwena 2-hour assimilation windovis
used,P10W2hactually outperformsVrW2h, analyzing angredictinglower MSLPs that aran
better agreement with the best trabtkP10W2h performs slightly better thaR10W2hin the
MSLP forecast.

Compared tamillions of V, observationsvailable there isonly one MSLP observation
eachanalysis timeThe above results indicate that when using toartsassimilation windog
the assimilation of a very limited number of MSLP datadsable tcestablish a balanced storm
as well as millions of Vr observations can, affecting the surface pressure predidi®n
differences in the MSLP forecasts amonghe three \f assimilationexperimentswindows are
much smaller, apparently due to the large number of Vr observatiotgle the forecast
assimilatingMSLP data aremore sensitive to thevindow length (Fig. 11). For this particular
case 2 hours appear sufficiently long fahe MSLP assimilatiorperformed every 10 minutes
produceintensity forecast comparabléo assimilating/, data.
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Assimilating both MSLP and ; always outperforns the assimilation of one of
observation typg regardlesshewindow length The improvement is larger for shorter windows

6. Summary and conclusions

Best trackminimum sea level pressu®SLP) data are treated as surface pressure
measurements at TC vortegnter ancassimilatedusingan ensemble Kalman filter (EnKR} a
convectionpermitting resolutionThe study was partly motivated byHamill et al. (2011 who
assimilatedTCVital dat, including thebest trackMSLP, into a global forecastmodel using
EnKF, their resultsshowed improved central pressure analgs but the intensity forecast
improvement was quickly lost ithe subsequenforecass. The low assimilation frequency and
coarse model resolution were believed to beptirearyreasonin this study,interpolatedMSLP
data are assimilated at 6010 minute intervals for a period 80 minutes, 1 hour & hours for
Hurricane lke (2008) before it made landfdlhe assimilabn and forecastxperiments used the
ARPS model and its EnKF DA system at 4 km grid spacing. In addtherrelative impacts of
MSLP versus of radar data are examined, by assimilaitigl velocityVr and/or reflectivityZ
data from two coastal opei@abal radarsndividually ortogether with the MSLP datd@he radar
dataarealways assimilated a0 minuteintervals theprocedure for assimilatingudar dataising
EnKF followsDong and Xu€2012 exactly.

The first set of experiments examined MSLP DA over-lzo@r window, at 60 or 10
minute intervals.The analysisof MSLP is shown toenhance théwurricane circulatiorand its
warm corestructureandit is achievedhrough crossariable covariancestimated byhe EnKF.
Through sensitivity experiments, it is shown that the updating of wind fields when assimilating
MSLP data has a more sustainable impact on the intensity forecast than updapemtem
while updating pressure by MSLP has little sustained impaetmodel pressure tends to quickly
respond to the wind ane@mperaturdields through hydrostatic and gradient wind adjustments
not the other way aroundrhis further highlights the iportance of flomdependent cross
covariancehatallows for dynamically consistent multariate analysis of the TC vortex.

The final analyzed TC vortex is shallower, and its structures are smoother when
assimilating MSLP datanly while radardataprovide more convectivscale structures; this is
not surprising because the dense velocity data contain muehaoovectivescale information
while the smaller covariance localization radsed for radar data also helghe analyzed warm
core in the former case is also placed too low in the eye regiben MSLP andV, dataare
assimilated togethemnalygs that have better overall vortex intensity and conveednale
structures are obtained.

With 10 minute assimilatn intervals, the assimilation of MSLP dakoneis able to
keep the analyzed MSLP lower than that obtaibg@ssimilating Vr datanly, but the MSLP
forecasterror growth is faster than thér case,apparentlybecause of the adjustment of the
pressure ield towards the less wedinalyzed wind and temperature feldn the case of Vr
assimilation, theinitially too high MSLP is decreased during the forecast periddsyugh
pressure adjustmetdwardsthe better analyzed wind fieldBhe analyzed MSLP dung the later
cycles of the 2 hour assimilation window is very close to the toask MSLP in the MSLP
assimilation case whiléhat inthe Vronly case remains a few hPa highérhenboth V; and
MSLP areassimilatederrors inboth analyzed and forecdgiSLPs remain very low in the later
cycles.

A 60-minute interval when assimilating the MSLP data alorgroves insufficientto
establish a welbalancedhurricane vortex in terms of MSLP forecate MSLPin the early
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forecast hourgncreasesnuchmore quikly than the best tracfthe hurricane was weakening at
this stagewhile the MSLP error in the experiment assimilating Vr data alone (at 10 minutes
intervals) grows slower (even though the final analyzed MSLP had slightly larger. &gam
combining ME&P and Vr data produced the lowest errorthe MSLP analysis and forecast.
Assimilating reflectivity data alone was able to reduce the MSLP byranly one thirdn the

final analysigelative to the no DA case.

Using 10 minuteMSLP assimilation interals led to much better MSLRanalyses and
forecass thanthat using 60 minute intervalsesulting inlower final MSLP analysis and reduced
initial MSLP forecasterror growth and outperformingthe forecas assimilatingV, or Z only.
Assimilating MSLP in addition toZ data significantlimproves the MSLRinalysis andorecast
butthe improvement in addition to Vr data is much less, because the assimilafiatataf is not
very effective atlecreasinghe MSLPerror.

The forecastsverealso verified aginstV, obsenations forthe first3 hous of forecast
whenhurricane Ike was near the cadsbt surprisinglythe much more voluminoug, produce
more convectivescale structurethan MSLP data and themproved fit of the forecast to Vr
observationslue to the assimilation of Vr data lasts throughout the 3 hours of forébasdit to
the Vr observations improves over time in the MSkiy case but the mifit remains slightly
(about 0.5 m9) larger than the Vr case by 3 hours.

The assimilation oMSLP also improves he track analysis andorecast Average 18
hour track forecasterrorswith MSLP assimilationare around11-13 km, comparable tdhose
obtained usingV, assimilation Assimilation of MSLP togetherwith Vr or Z improves track
forecastmore thartheassimilation of Yor Z only.

Sensitivity of the intensity forecast tbe length of thaMSLP and/or \f assimilation
window is also tested.Using shorer assimilation windowsof 30 minutesor 1 hourand 10
minute assimilation intervalSLP forecastwith V, assimilationoutperformsthe forecast with
MSLP assimilation Using a2 hour window the opposite is trueFor shorter assimilation
windows,combiningV, andMSLP gives even more benefits.

In summary the assimilation oMSLP is able to improvehurricane lkeanalysesand
forecass within a cloudresolving modelmostly throughimprovements taghe model wind and
temperature fieldsvia crosscovarianceof surface pressure with wind and temperature in the
EnKF. Because othe very limited piecesof information in theMSLP observationsfrequent
analyses are necessary detablish abalancedhurricane vortex havinglow intensity error
growth. Compared toV, data, MSLP data have lessbility in producing convectivscale
structures gsverified against Vr observationapdthe analyzedvarm-core structure isot very
realistic. The best results are obtained when Vr and MSLP data are assimilated together.

In our case,tle centerposition of Ikenever deviates tofar from the best trackthus the
assimilation ofMSLP as a regular pressure observatlonated at the best track positids
effective Such treatmentanbe problematic ithe simulated T@enteris far fromthe best track.
The assimilation of TC position and intensity separaf@yn 2010 Wu et al.2010 provides a
possible solutiono this problem

In order to utilizegroundbased radadatg we assimilaté MSLP shortly befordke made
landfall. For arapidly intensifying TCover the oceanhe conclusion abouheimpactof MSLP
assimilationmay differ. Further stueks withmoreTCsthat arein variousstages of development
are neededo more completelyunderstandhe impacs of MSLP assimilation Other available
observationshould also be included in the assimilation to obtain more comprehemgsets.
These can be topics féuture studies
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List of figures:

Fig. 1. The model grid, the best track (denoted by black dots) and radar coverage for lke. The

positions of two radars argenoted by black squares. The range circles of Houston
Gavelston, Texas (KHGX) and Lake Charles, Louisiana (KLCH) radars are for a
maximum range of 460 km. Best track covers 0300 September 13 to 0000 September 14
and hurricane locations are plotted evetyo8rs.

Fig. 2. Schematics showing the flowcharts for experiments that (a) assimilate radar and MSLP

Fig

Fig.

Fig.

Fig

Fig.

Fig
Fig

Fig

Fig.

data every 10 minutes from two hours, and (b) radar data every 10 minutes but MSLP
data every 60 minutes for 2 hours, afa) reference forecast NoDA that did not
assimilate any radar or MSLP data. The downward arrows denote MSLP DA times and
the upward dashed arrows denote radar DA times. Ensemble forecasts are shown as thick
horizontal arrows while single deterministic foasts are shown as thin horizontal arrows.
The ensemble DA experiments contain-aodir single spinup forecast period starting
from GFS analysis at 18 UTC, September 12 2008, which is followed byhaur6
ensemble spinup period with mesoscale perturbatdded at 22 UTC, September 12.
Convectivescale perturbations are added at 04 UTC, September 13, the beginning time
to EnKF DA cycles. A single deterministic forecast starts from ensemble mean analysis
at 06 UTC, September 13, the ending time of EnKF Ddles.

. 3. Increments of (a) horizontal wind component and pressure (every 200 Pa) at 1 km, (b)

potential temperature (every 1 K) at 1 km, (c) vertical velogifgvery 0.2 m3) in the
eastwest crosssection along € in (a), and (d) potential temperature in the same
vertical crosssection as (c), at 0500 UTC September 13 of experiment P60W2h. A and B
denote the position of the background vortex center and the position of the MSLP
observation, respectively. The baotgnd wind vectors are also plotted in (c).

4. The analyzed and forecast MSLP during the assimilation cycles of different experiments,

compared to the best track.

5. The analyzedusface horizontal wind speed (shaded) and sea level pressure at 0600 UTC

September 13 from (a) the GFS analysis, (c) VrW2h, (e) P10W2h and (g) VrP10W2h. (b),
(d), () and (h) show the eastest crosssection of horizontal wind and temperature
through thendividual vortex center of each experiment.

. 6. Azimuthally averaged radineight plots of horizontal winds from (a) the GFS analysis,

(c) Vrwzh, (e) P10W2h and (g) VrP10W2h. (b), (d), (f) and (h) show the rheigst
plots of temperature anomaly of each experiment.

7. Pressure impact index (in Pa) with time (Pl; see section 3.4 for explanation) for

experiments updating various model variables.

. 8. Forecast minimum sea level pressures (a and c¢) and surface maximum wind (b and d)

with time, compared to the observed best track and CNTL.

. 9. Rootmeansquare differences between observed and foregdst ¥xperiments CNTL,

VrwW2h, P10W2h and VrP10W2H, calculated against radar (a) KHGX and (b) KLCH.

. 10. (a) Forecast TC center (determined by MSLP position) every 3 hours from 0600 UTC

September 13 to 0000 UTC Septemldr Note the map is stretched to highlight the
difference between the tracks and (b}H&ir average track errors. The average track
error of CNTL is 40 km and not shown here.

11. Forecast minimum sea level pressui@mf sensitivity experiments varying the
assimilation window length, compared to the observed best track and CNTL.
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Tablel. List of experimentassimilating MSLP and/or radar observatiphss the control
experiment

Assimilated dservation MSLP DA cycle Assimilation
Expeaiment type interval window length
CNTL None N.A. N.A.
P60W2h MSLP 60 min. 2 hours
P10W2h MSLP 10 min. 2 hours
VrWw2h Vr N/A 2 hours
VrP60W2h Vr & MSLP 60 min. 2 hours
VrP10W2h Vr & MSLP 10 min. 2 hours
ZW2h 4 N/A 2 hours
ZP60W2h Z & MSLP 60 min. 2 hours
ZP10W2h Z & MSLP 10 min. 2 hours
P10W1h MSLP 10 min. 1 hour
VrW1lh Vr N/A 1 hour
VrP10W1h Vr & MSLP 10 min. 1 hour
P10W30m MSLP 10 min. 30 min.
VrWw30m Vr N/A 30 min.
VrP10W30m Vr & MSLP 10 min. 30 min.
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Fig. 1. Themodel grid the best track (denoted by black dots) and radar coverage for lke. The
positions of two radars are denotedldgick squaresThe range circles of Houstd@pavelston,
Texas (KHGX) and.ake Charles, Louisiana (KLCH) radars are for a maximum range of 460 km.
Best trackcovers0300 Sepember 13 to 0000 September 14 and hurricane locationdated

every 3 hours.
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pob v fromensemble mean analysis
Radar data
EnKF DA cycles
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Fig. 2. Schematics showinthe flowcharts for perimentsthat (a) assimilate radar andSLP
dataevery 10 minutesfrom two hours, angb) radar data every 10 minutes but MSLP data every
60 minutes for 2 hours, and (c) reference foreddsDA that did not assimilatany radaror
MSLP data The downwardarrows denote MSLHDA times and theupward dashedarrows
denote radaDA times Ensemble forecasts are shown as thick horizontal arrows while single
deterministic forecasts are shown as thin horizontal arrows. The ensemble DA experiments
contain a 4hoursingle spinup forecast period starting from GFS analysis at 18 Bd@iember

12 2008, which is followed by a-Bour ensemble spinup period with mesoscale perturbations
added at 22 UTCSeptemberl2. Convectivescale perturbations are added at 04CUT
Septembel 3, the beginning time to EnKF DA cycles. A single deterministic forecast starts from
ensemble mean analysis at 06 UB&ptembel 3, the ending time of EnKF DA cycles.
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Fig. 3. Incremens of (a) horizontal wind component and pressure (every P&t 1 km, (b)
potential temperature (every 1 i) 1 km, (c) vertical velocityv (every 0.2 m 3) in theeast
west crosssection alongC-D in (a), and (d) potential temperature in the same venticas
section as (c)at 0500 UTCSeptembed 3 of experiment P60W2MA and Bdenotethe position
of the background vortex center atie position of the MSLP observatiorespectively The

background wind vecterarealso plotted in (c).
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24



la’
|||h—
g oD
> b o>

[N
H O OO
> M Ok

|
N
&®

I I |

[
~

2 N N W
M o o o

Il Il (
N O I O O N N
A O oO®
> b or

>

Il (
[T [ [
A O OO
> b ok

0 36.

L 1128,
".‘\\\ I~

NN 1120,

=C= {2 12,

700 2<% //f¢¢,wm‘»‘\» A 0 T —4.
1000 1100 12|<(j 1300 ' 1400 1500 1000 1100 120|(() 1300 1400 1500

m

0
m

Fig. 5. The analyzedurfacehorizontal windspeedshadedpandsea levepressureat 0600 UTC
September 13 from (a) the GFS analysisM@)/2h, (e) P10W2hand (g)VrP10W2h (b), (d), €)
and f) show the easwest crossection of horizontal wind and temperature throubh
individual vortex center of each experiment.
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Fig. 6. Azimuthally averagedadiusheight plots ofhorizontal winds fron{a) the GFS analysis,
(c) VrW2h, (@ PLOW2h and (¢ VrP10W2h. (b), (d), (f) and (h) show the radiagight plots of
temperature anomaly of each experiment.
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