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ABSTRACT 

 

Extending an earlier study, the best track minimum sea level pressure (MSLP) data are 

assimilated for landfalling Hurricane Ike (2008) using an ensemble Kalman filter (EnKF), in 

addition to data from two coastal ground-based Doppler radars, at a 4 km grid spacing. Treated 

as a sea level pressure observation, the MSLP assimilation by the EnKF enhances the hurricane 

warm core structure and results in a stronger and deeper analyzed vortex than that in the GFS 

analysis; it also improves subsequent 18-hour intensity and track forecasts.  

With a 2-hour total assimilation window length, the assimilation of MSLP data 

interpolated to 10 minute intervals results in more balanced analyses with smaller subsequent 

forecast error growth and better intensity and track forecasts than when the data are assimilated 

every 60 minutes. Radar data are always assimilated at 10 minute intervals. 

For both intensity and track forecasts, assimilating MSLP only outperforms assimilating 

radar reflectivity (Z) only. For intensity forecast, assimilating MSLP at 10 minute intervals 

outperforms radar radial wind (Vr) data (assimilated at 10 minute intervals), but assimilating 

MSLP at 60 minute intervals fails to beat Vr data. For track forecast, MSLP assimilation has a 

slightly (noticeably) larger positive impact than Vr (Z) data. When Vr or Z is combined with 

MSLP, both intensity and track forecasts are improved more than the assimilation of individual 

observation type. 

When the total assimilation window length is reduced to 1 hour or less, the assimilation 

of MSLP alone even at 10 minute intervals produces poorer 18-hour intensity forecasts than 

assimilating Vr only, indicating that many assimilation cycles are needed to establish balanced 

analyses when MSLP data alone are assimilated; this is due to the very limited pieces 

information that MSLP data provide. 

Key words: hurricane, data assimilation, ensemble Kalman filter, best track
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1. Introduction  

Although hurricane track forecasts have improved significantly over the last two decades, 

hurricane intensity forecasting remains a significant challenge (Cangialosi; Franklin 2011; 

Rappaport et al. 2009). The slow improvement in hurricane intensity forecasting is believed to be 

at least partly due to limited ability to initialize tropical cyclone (TC) vortices accurately in 

numerical models (Rogers et al. 2006). Convective-scale structures in TCs are believed to have 

direct or indirect impact on TC intensity and track forecasts (Fovell et al. 2009; Fovell et al. 2010; 

Houze et al. 2007; Wang 2009). 

Techniques for initializing TC vortices include vortex bogusing (e.g., Kurihara et al. 1998; 

Pu; Braun 2001) and direct initialization of TC vortex by assimilating observations on the vortex 

scale. Recently, a number of studies have demonstrated reasonable success assimilating airborne 

or ground-based radar data for initializing TCs, and these studies typically use the three-

dimensional variational (3DVAR) (e.g., Du et al. 2012; Pu et al. 2009; Zhao; Xue 2009; Zhao; 

Jin 2008) or ensemble Kalman filter (EnKF) (e.g., Dong; Xue 2012; Weng; Zhang 2012; Zhang 

et al. 2009) methods. While the EnKF method is a theoretically advanced method that makes use 

of flow-dependent background error covariance derived from a forecast ensemble, Dong and 

Xue (2012, DX12 hereafter) also found that when starting from the GFS global analysis 

background it takes 5 to 6 EnKF cycles of 10 minute intervals, assimilating full volume radial 

velocity and reflectivity data from two coastal Doppler radars, to bring the minimum central 

pressure of a category 3 hurricane to within 5 hPa of the observed best track value. Even with a 

total of 13 analysis cycles at 10 minute apart, the final minimum pressure error remained at 

nearly 5 hPa. Often, the minimum central pressure in TCs is difficult to analyze accurately 

without direct surface pressure observations. 

Best track minimum sea level pressure (MSLP) has been used as observational data and 

assimilated into numerical models to help improve the TC intensity analysis in recent research 

studies. Hamill et al. (2011) assimilated the so-called TCVital observations every 6 hours using 

EnKF in a global forecast model. Here, TCVital is a human-synthesized dataset including the 

best track estimates of TC minimum central pressure and center location. Despite clearly better 

track forecasts of TCs in their study compared to operational benchmarks, the resolution of their 

global model was insufficient to accurately predict the TC intensities; in fact, it was difficult for 

the global model to maintain the initially intense TCs initialized using TCVital data in their study. 

Torn and Hakim  (2009)  and Wu et al. (2010)  assimilated hurricane positions in real data 

studies. Torn (2010) also assimilated best track TC position and MSLP data along with other 

conventional observations every 6 hours in a mesoscale model at 36 km horizontal grid spacing 

using EnKF, although the study did not specifically evaluate the impact of TC position and 

intensity observations. Earlier, in a proof of concept study, Chen and Snyder (2007) assimilated 

vortex intensity in terms of maximum vorticity using EnKF in a simple 2-dimensional barotropic 

model and found improvement to the vortex intensity and track analysis and forecast. So far, 

according to our knowledge, the TCVital type of data has not been assimilated into a hurricane 

prediction model at a cloud-resolving resolution with or without radar data using EnKF. It 

remains an open question as to the kind of impact one can achieve with TCVital data in such 

situations. Most recently, Zhao et al. (2012) performed an experiment assimilating MSLP data 

into a convection-resolving model for a typhoon, in addition to ground-based radar data using a 

3DVAR method; the impact of the MSLP assimilation was lost very quickly (in less than 1 hour) 

in their study due to the univariate nature of their analysis method - there was no temperature 
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analysis increment to balance to pressure increment in their analyses. Given the multivariate 

nature of the EnKF method, it is hoped that EnKF can do a much better job assimilating MSLP 

data at the convective scale. 

In this paper, the impact of assimilating MSLP data into Hurricane Ike (2008) using 

EnKF is examined. The best track MSLP data are assimilated alone or in addition to the Doppler 

radar data, with the configurations of the EnKF radar assimilation being the same as in DX12. 

The rest of this paper is organized as follows: section 2 introduces the model, observations, and 

EnKF experiment setup. The analysis increments and the change to the hurricane intensity during 

the analysis cycles are presented and discussed in section 3. The impacts of MSLP assimilation 

on the intensity and track forecasts are discussed in section 4. Results from several sensitivity 

experiments are discussed in section 5, and a summary is provided in section 6. 

 

2. The case, prediction model, observations and EnKF experiment design 

2.1 Hurricane Ike and model configurations 

Hurricane Ike (2008) is the third costliest landfalling hurricane in U.S history. It made 

landfall near Galveston, Texas at 0700 UTC September 13, 2008. More details of Ike near its 

landfall can be found in DX12. This study focuses on the analyses and forecasts of Ike shortly 

before and after landfall. 

The prediction model used in this study is the Advanced Regional Prediction System 

(ARPS, Xue et al. 2000; Xue et al. 2003a). The physical domain is defined by a 515 × 515 × 53 

grid with a 4 km horizontal grid spacing. A vertical grid stretching scheme with a hyperbolic 

tangent function is used (Xue et al. 1995); the mean vertical grid spacing is 625 m and the 

minimum vertical spacing is 50 m at the surface. The Lin et al. (1983) ice microphysics scheme 

is used along with the 1.5-order TKE-based sub-grid-scale turbulence and PBL parameterizations. 

Details on these physics options can be found in Xue et al. (2003b; 2001). Other details on 

physics and computational options are the same as those used in DX12. 

2.2 Observations 

The best track MSLP data from National Hurricane Center are assimilated between 0400 

and 0600 UTC September 13 in the first set of experiments at intervals of either 10 or 60 minutes 

(Table 1). MSLP data, including their values and locations, at such intervals are obtained through 

linear interpolation between times when best track observations are available. The observed 

MSLP values changed only slightly within the two-hour data assimilation (DA) window. Radar 

observations are assimilated alone or together with the MSLP data in the experiments to 

investigate their relative impacts. As in DX12, radial wind (Vr) or reflectivity (Z) data from two 

coastal WSR-88D radars at Houston-Gavelston, Texas (KHGX) and Lake Charles, Louisiana 

(KLCH) are assimilated, always at 10 minute intervals in this study. Details on the radar 

observations and their assimilation can be found in DX12.  

In this study, we treat the best track MSLP data as regular sea level pressure observations 

located at the best track vortex center location, similar to Hamill et al. (2011). A simple pressure 

reduction equation [ Eq. (1) of (Benjamin; Miller 1990) ]  is applied as the observation operator 

for the sea level pressure: 
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where SLP  is the sea level pressure, 0P
 
and 0T  are the pressure and temperature at the first model 

level above the surface, z is the height of the first model level, g is the environmental 

temperature lapse rate (taken as 9.8 K km
-1
), g is the gravitational acceleration, and R is the gas 

constant. A bi-linear horizontal interpolation is used to project the sea level pressure from the 

model grid onto the best track position. The observational error of MSLP in the human-

synthesized TCVital dataset can range from 0.75 to 2 hPa (Mingjing Tong 2010, personal 

communication). In this study, the observation error of MSLP is assumed to be 1 hPa, smaller 

than 2 hPa used in Hamill et al. (2011).  The choice of the relatively small MSLP observation 

error is partially based on the observation that the analyzed MSLP without MSLP data is always 

positively biased (i.e., the analyzed hurricane is too weak) in this case, and a smaller MSLP 

observation error is expected to ópushô the minimum pressure closer to the best track observation. 

Also we note that frequent assimilation of time interpolated best track data has an effect that is 

somewhat similar to the nudging method, where the model state is ónudgedô towards the 

observations or an analysis persistently over a time period. In our case, the model state is 

constrained by the best track observations at multiple time levels through EnKF data assimilation. 

Such frequent assimilation and the associated model adjustments during the assimilation cycles 

are expected to increase/accelerate the impact of the very limited number of MSLP data within a 

relatively short period of time. The model grid, the radar locations and radar data coverage are 

shown in Fig. 1, along with the best track from 0300 UTC September 13 to 0000 September 14. 

 

2.3 EnKF experiment design 

The ensemble square-root filter (EnSRF) of Whitaker and Hamill (2002) forms the basis 

of our EnKF assimilation system; the initial implementation of the EnSRF for the ARPS system 

is described in Xue et al. (2006) and the generation of ensemble initial conditions follows DX12.  

Briefly, the forecast ensemble is created by adding mesoscale and convective-scale 

perturbations in two steps. In the first step, a single 4-hour forecast is run from the analysis at 

1800 UTC September 12 of GFS (Global Forecasting System) of National Centers for 

Environmental Prediction (NCEP) interpolated to the 4 km model grid; mesoscale perturbations 

are added to the 4-hour forecast valid at 2200 UTC in the entire model domain to create an 

ensemble of 32 members. The perturbations are created by smoothing Gaussian random 

perturbations with zero mean using a 2D recursive filter (Purser et al. 2003), with a horizontal 

de-correlation scale of 100 km (see, e.g., Huang 2000; Jung et al. 2012). The perturbations are 

scaled to have standard deviations of 2 m s
-1
 for u and v, 1 K for ɗ and 1 hPa for p. For qv, the 

relative standard derivation is 10% of the unperturbed value, to avoid excessively large absolute 

perturbations at the upper levels. Other state variables are not perturbed in this step. Six-hour-

long ensemble forecasts are then carried out from these perturbed initial conditions to develop 

evolved background error covariance structures on the mesoscale.  

In the second step, at 0400 UTC September 13, additional convective-scale perturbations 

with a smaller horizontal de-correlation scale of 12 km and a vertical de-correlation scale of 4 

km are added to the ensemble forecast fields, but only in regions where observed Z exceeds 10 

dBZ. These perturbations are created by applying a fifth-order-correlation smoothing function 

after Tong and Xue (2008). The standard deviations are 2 m s
-1
 for the wind components, 2 K for 

ɗ, 10% for qv, and 1 g kg
-1
 for all microphysical variables. These perturbations were found to 

yield best analysis and forecast results for the Ike case through many assimilation experiments in 

DX12 and are therefore used here also. 
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The lateral boundary conditions are from the 6-hourly operational GFS analyses with 3-

hourly forecasts interleaved in between, available on the 0.5 degree grid. They are also perturbed 

by adding mesoscale perturbations created in the same way as in step one.  Within ARPS, linear 

time interpolations are performed between the boundary condition times. 

In the first set of experiments (Table 1), MSLP and/or radar observations are assimilated 

in a 2-hour window from 0400 to 0600 UTC, September 13 2008, which is the same as in DX12. 

After the assimilation, an 18-hour deterministic forecast is carried out from 0600 UTC 

September 13 to 0000 UTC September 14 from the ensemble mean analysis. In a control 

experiment (CNTL) used for reference, a forecast of the same length is started from GFS 0600 

UTC analysis without any additional radar or MSLP data. Schematics for three experiments, 

corresponding to VrP10W2h/ ZP10W2h, VrP60W2h/ ZP60W2h, and CNTL in Table 1, are 

shown in Fig. 2. Table 1 gives a full list of experiments. In the experiment names, Vr, Z, and P 

denote the assimilation of Vr, Z, and MSLP data, respectively. Numbers ñ10ò and ñ60ò following 

P in the names indicate the time interval (in minutes) at which MSLP data are assimilated. The 

number following W denotes the total length of assimilation window in hours or minutes. In all 

cases, radar data assimilation interval is 10 min. For example, in experiment VrP10W30m, Vr 

and MSLP data are assimilated together within a 30 minute assimilation window at 10 minute 

intervals.  

Covariance inflation and localization are applied in the EnKF to alleviate the effects of 

sampling and other sources of error (e.g. model errors) within the ensemble assimilation system. 

A horizontal covariance localization radius of 300 km is used for MSLP assimilation, chosen 

roughly based on the size of the background vortex. Since there is only one MSLP observation at 

the analysis time and the MSLP is a vortex-scale parameter, a large horizontal localization radius 

is reasonable to ensure that the impact of the MSLP assimilation extends to the entire vortex. A 

vertical localization radius of 10 km for MSLP is determined to be close to being optimal 

through a number of sensitivity experiments; such a radius is reasonable because the surface 

pressure is directly linked to temperature perturbations in the tropospheric air column. The 

localization radius for radar observations is 12 km horizontally and 4 km vertically, as used in 

DX12 and are consistent with earlier studies of storm-scale EnKF radar data assimilation (Jung 

et al. 2008; Tong; Xue 2008). Prior multiplicative covariance inflation of 5% is applied to the 

state variables within the regions influenced (through EnKF updating) by the radar and/or MSLP 

data. Posterior additive covariance inflation is applied to the state variables in regions covered by 

assimilated radar observations; the magnitudes of the additive perturbations are the same as those 

used in DX12. In experiments assimilating both radar and MSLP, radar observations are 

assimilated first, and MSLP data second. Those state variables having the strongest dynamic link 

to the MSLP observation, including wind components, potential temperature and pressure, are 

updated by MSLP. The updating of state variables by radar observations (Vr and/or Z) follows 

DX12. The reflectivity data are used to update only pressure and the mixing ratios of cloud water 

(qc), ice (qi), rain water (qr), snow (qs), and hail (qh) while the radial velocity data update all of 

the eleven state variables, i.e., u, v, and w, potential temperature q, p, mixing ratio of water vapor 

qv, and all microphysical variables. DX12 found that such settings yielded the best hurricane 

analysis and forecast.  

As found in DX12, whenever Vr is assimilated together with Z, the analyses and forecasts 

are very similar to corresponding experiments assimilating Vr only. Thus, for brevity, 

experiments assimilating both Vr and Z are not shown in this paper.   
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3. Impact of MSLP observations on hurricane analysis 

3.1 Analysis increments 

The wind and potential temperature analysis increments are plotted in Fig. 3 for P60W2h 

at 0500 UTC September 13, the first time that the MSLP data is analyzed in this experiment; it is 

to illustrate the impact of assimilating MSLP observation. The increment is defined as the 

difference in the state variables before and after the assimilation of MSLP observation. Fig. 3 

shows that after analyzing MSLP observation, a strong cyclonic circulation increment around the 

MSLP data location (B in Fig. 3a) is evident at 1 km above the mean sea level (MSL) (Fig. 3a), 

indicating an enhancement to the background vortex that was too weak. The center of the 

increment circulation is not co-located with the background vortex center, determined by the 

background minimum sea level pressure (A in Fig. 3a), suggesting that the assimilation of MSLP 

observation is trying to change the vortex center location also. The results suggest that the 

covariance between the pressure and wind fields derived from the ensemble is providing 

important information to enable the MSLP data to properly influence the wind fields in the EnKF, 

resulting in dynamically consistent multivariate analyses. A reduction in pressure is also noted at 

1 km above MSL in the vortex region, as shown by the pressure increment in Fig. 3a. The 

reduction is greater than 10 hPa above the MSLP location, and decreases outward.  

The analysis increments of potential temperature at 1 km above MSL are plotted in Fig. 

3b. While the potential temperature increment pattern is more complex than the pressure 

increment pattern, the increments are all positive in the vortex region, with a maximum value of 

about 5 K at this level, indicating that MSLP data assimilation has strengthened the warm core of 

the cyclone. Positive increments of potential temperature extend upward to the mid-troposphere, 

with a 1 K increment at the 5 km level above the MSLP data location (Fig. 3d). The 10 km 

vertical localization radius used allows for the enhancement to the warm core in a deep layer. 

Increments of wind, pressure and potential temperature generally decrease with height (not 

shown) as expected, but they do reach the mid-troposphere, indicating rather deep vertical 

correlation between surface pressure and these variables.  

Vertical velocity (w) analysis increments, representing changes in regions of updrafts and 

subsidence are plotted along with the background wind vectors in Fig. 3c, for a vertical cross-

section through the forecast background vortex center (A in Fig. 3a) and the MSLP observation 

location (B in Fig. 3a). The positive increments of w reflect the enhancement of updraft 

surrounding the MSLP location. Since the northwest quadrant of the vortex is already over the 

land at this time so that the vortex in that region has started to weaken, the positive increments of 

w are broader and stronger on the southeast side (right of B in Fig. 3c). There is a region of 

negative increments inside the eye (almost directly over B, the location of MSLP observation), 

suppressing the weak updraft found in the background vortex (as indicated by the wind vectors) 

and correctly establishing descending motion in the eye region.  The increments in temperature 

and wind fields are physically reasonable; they are consistent with the fact that the background 

vortex was too weak, and the decreased central pressure at 1 km altitude by the MSLP data is 

accompanied by enhanced warm core and eyewall updrafts as well as downward motion in the 

eye region. 

 

3.2 Impact of MSLP data on hurricane intensity during the analysis cycles 

To investigate the impact of MSLP data on the analyzed hurricane intensity during the 

assimilation process, the MSLP values of the analyzed hurricane before and after each analysis 
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are plotted in Fig. 4. The best track MSLP data are linearly interpolated to 10 minute interval 

analysis times for comparison. In our study the MSLP value at each time is assimilated as a 

regular surface pressure observation located at the best track vortex center, while the MSLP in 

the analysis is determined from the analyzed mean sea level pressure field and this analyzed 

MSLP is not necessarily at the best track vortex center.  

We first examine the forecast and analysis MSLPs when only MSLP data are assimilated. 

When MSLP observations are assimilated at 60 minute intervals in P60W2h over a 2 h window 

(at hour 1 and 2 into the window), the analyzed MSLP decreases by about 14 hPa to 957 hPa 

during the first analysis at 0500 UTC September 13 (Fig. 4a). In the forecast over the next hour 

without additional data assimilation, the model MSLP increases to 964 hPa by 0600 UTC. The 

second analysis of MSLP data at 0600 UTC reduces the model MSLP to 954 hPa, 3 hPa higher 

than the best track observation.  

When MSLP is assimilated at 10 minute intervals in P10W2h, the analyzed MSLP is 

decreased by more than 10 hPa during each of the first two analysis cycles (Fig. 4b). Over the 2-

hour assimilation window, the assimilation of MSLP always reduces the analyzed MSLP and the 

magnitude of reduction decreases gradually with cycle as the model MSLP becomes closer to the 

observed values. There is always an increase in MSLP in the ensuing forecast, but the amount of 

increase decreases with the number of cycles, suggesting an increasing level of consistency 

among model state variables as the model state is continually adjusted through the cycles. At 

0520 UTC, the analyzed MSLP actually becomes ~2 hPa lower than observed value interpolated 

to this time. Since the analyzed MSLP is not necessarily at the same position as the MSLP 

observation, this "over-correcting" behavior in P10W2h at 0520 UTC is possible because of 

unreliable spatial covariance causing under-shooting of analyzed pressure away from the MSLP 

data location. At the end of the assimilation window, the analyzed MSLP in P10W2h is almost 

exactly the same as the best track value of roughly 951 hPa. Therefore, frequent assimilation of 

MSLP observations at 10 minute intervals is able to improve the intensity of the model TC in 

terms of MSLP, making it to approach the best track intensity after 6 assimilation cycles.       

Next, we examine the cases when Vr data are assimilated alone, or together with MSLP 

data. In experiment VrW2h that assimilates Vr data only at 10 minute intervals, the MSLP is 

reduced by about 5 hPa in the first analysis at 0410 UTC, while in later cycles the decrease by 

analysis is small and occasionally negative (e.g., at 0430 UTC). Much of the MSLP reduction is 

achieved during the forecast step in the earlier cycles, indicating that the model pressure field is 

adjusting to the improved wind field, not surprisingly because of the assimilation of a large 

number of Vr data (Fig. 4a). In VrP60W2h, the addition of MSLP observation at 0500 UTC 

further decreases the MSLP by about 1 hPa compared to VrW2h (Fig. 4a) but the impact is small 

in the ensuing cycles. At 0600 UTC, the second assimilation of MSLP data results in a final 

analyzed MSLP in VrP60W2h that is about 2 hPa lower than in VrW2h. Therefore the impact of 

assimilating MSLP data at hourly intervals when Doppler radial velocity data from two radars 

are assimilated at 10 minute intervals, in terms of the analyzed MSLP, is minimal in this case.  

In VrP10W2h,  the MSLP data are also assimilated at 10 minute intervals together with 

Vr data, the analyzed MSLPs are always lower than those of VrW2h, and MSLP errors generally 

grow slower during the forecast step than in P10W2h (Fig. 4b). In VrW2h, the surface pressure 

reduction is achieved almost entirely through model adjustment while in VrP10W2h the 

assimilation of MSLP provides direct help; resulting in much faster pressure reduction and more 

accurate final analysis of MSLP (Fig. 4b). In P10W2h, while the MSLP is reduced similarly as in 

VrP10W2h, the error growth is much larger in the forecast steps, especially during the earlier 
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cycles; this is because of the larger mutual adjustments among the pressure, wind and other state 

variables when no other direct observations were assimilated.  

We now look at the cases when Z (instead of Vr) data are assimilated alone or together 

with MSLP data. In experiment ZW2h, the model MSLP is changed little by the Z assimilation 

before 0540 UTC (Fig. 4a). Reductions of 2 to 3 hPa in MSLP are achieved in the last three 

analysis cycles, likely a result of improved cross-covariance between the microphysical and 

pressure fields in the ensemble (as discussed in DX12). In ZP60W2h, MSLP is assimilated at 

0500 and 0600 UTC; at 0500 UTC an additional MSLP reduction of 14 hPa is achieved by 

assimilating MSLP data (Fig. 4a). While the storm weakens quickly to approximately 963 hPa in 

MSLP during the subsequent 10 minute forecast, the MSLP in the forecast is much lower than 

that of ZW2h, and remains so until the end of the assimilation window.  Between 0510 and 0600 

UTC, the assimilation of Z data every 10 minutes causes very little change to MSLP, and it 

remains more or less constant; at 0600 UTC, the second analysis of MSLP data further reduces 

the minimum pressure by 10 hPa to reach 953 hPa, only 3 hPa higher than the observed. Still, 

relatively rapid error growth in the subsequent forecast is expected with the very limited number 

of MSLP analysis cycles in this case; this fact will be discussed further later. 

The MSLP values in ZP10W2h are very similar to those of P10W2h before 0450 UTC 

(Fig. 4b). In the last few cycles, the analyzed MSLP in ZP10W2h is closer to that of best track, 

and slightly higher than that of P10W2h. Comparing ZP10W2h and P10W2h, the assimilation of 

Z in addition to MSLP does not seem to further improve the intensity analysis. During some of 

the cycles (e.g. 0450-0530 UTC), the analysis and forecast MSLP in ZP10W2h are slightly 

worse than P10W2h while in some other cycles (e.g., 0520 UTC), P10W2h over analyzes the 

intensity somewhat. But in general, the assimilation of MSLP data every 10 minutes with and 

without Z data results in analyzed MSLP values that are close to the best track data after several 

analysis cycles (Fig. 4b).  Given the apparent effectiveness of MSLP data in analyzing the 

minimum surface pressure of a hurricane, does it mean that we no longer need radar or other 

types of high-resolution observations?  We will examine the analyzed hurricane structures next 

which will help answer this question. 

3.3 Analyzed hurricane structures 

Fig. 5 shows the wind, sea level pressure, and temperature fields of GFS analysis, and the 

final EnKF analyses of VrW2h, P10W2h, and VrP10W2h at the surface and in the west-east 

vertical cross-sections through the individual vortex center of each experiment. For brevity, only 

experiments with MSLP assimilated every 10 minutes are shown here. With Vr data from two 

coastal radars assimilated, the hurricane in VrW2h (Fig. 5c,d) is much stronger than that in the 

GFS analysis (Fig. 5a,b), with both lower center pressure and larger radial pressure gradient. In 

all three DA experiments, and in the GFS analysis, the maximum wind is always on the east side 

of the vortex. The vortex of VrW2h is much deeper than that of the GFS analysis, as shown by 

the strong wind exceeding 48 m s
-1
 extending to 6.4 km vertically (Fig. 5d). The maximum wind 

in VrW2h is approximately 59.5 m s
-1
, which is much larger than the 44.5 m s

-1 
in GFS analysis. 

The warm core is also much stronger and deeper in VrW2h than in the GFS analysis. When Z is 

assimilated in ZW2h, the final analyzed storm is also stronger than in the GFS analysis, but 

weaker than in P10W2h (not shown here; cf. DX12 Fig.6b, f, j). 

In P10W2h, the minimum central pressure is even lower than in VrW2h (Fig. 5e). The 

wind field of P10W2h, having a maximum of 55.7 m s
-1
, is stronger and deeper than that of GFS 

analysis, but weaker than that of VrW2h (Fig. 5f). Strong winds of greater than 48 m s
-1 

extend to 

around 3.6 km above the surface in P10W2h (Fig. 5f), shallower than that in VrW2h (Fig. 5d). 
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The warm core in P10W2h is stronger than in the GFS analysis, but not as deep as in VrW2h. It 

is clear that the assimilation of MSLP data is more effective in reducing the surface pressure 

while the assimilation of Vr data is more effectively in establishing the strong vortex circulation. 

The analyzed minimum central pressure of VrP10W2h is close to that of P10W2h and 

lower than that of VrW2h (Fig. 5g), and its vortex is stronger and deeper than in VrW2h with a 

maximum speed of 61.7 m s
-1
 and the region with wind speed exceeding 48 m s

-1
 extends to 7 

km above the surface (Fig. 5h). The warm core in VrP10W2h is as deep as in VrW2h. In 

ZP10W2h, the final analysis is similar to P10W2h (not shown).  

The right column of Fig. 5 also shows the temperature fields in the vertical cross sections. 

It is clear that VrW2h (Fig. 5d) and VrP10W2h (Fig. 5h) produce more realistic warm-core 

temperature structures than in P10W2h (Fig. 5f); this is perhaps not too surprising because 

MSLP data do not directly provide information on the vertical structures of the hurricane. 

In Fig. 5, the vortex structure in P10W2h appears relatively smooth; by comparison, more 

convective-scale structures are analyzed when Vr observations are assimilated and such 

convective-scale structures can be important for the hurricane prediction. The assimilation of 

MSLP does help strengthen the vortex although it tends not to introduce convective-scale 

structures. When both types of observations are assimilated together, the hurricane acquires a 

lower central pressure and stronger and deeper vortex circulations than when Vr or MSLP are 

assimilated individually. 

Individual cross-section shown earlier may not be representative of the vortex structure. 

Azimuthally averaged radius-height wind fields and temperature anomalies of the final analysis 

at 0600 UTC are plotted in Fig. 6, together with those of the GFS analysis. The azimuthal-mean 

horizontal winds in all three DA experiments are substantially stronger than those in the GFS 

analysis. In P10W2h, the maximum azimuthal-mean wind exceeds 42 m s
-1
 while the maximum 

temperature anomaly is over 12 ºC and is located at 1 to 2 km above the surface (Fig. 6e, f). The 

latter very strong temperature anomaly centered in the lower troposphere is not consistent with 

commonly observed or simulated structures within TCs (Emanuel 2005; Wang 2002) where 

largest anomaly is usually found at the mid-troposphere. With MSLP data being the only data 

source in this case, the vertical spreading of observational information depends strongly on the 

spatial error covariance, which tends to be less reliable than direct observations; this may be the 

reason for the unrealistically-strong warm core at the low levels found in P10W2h. In VrW2h, 

the horizontal wind fields have much larger horizontal gradients in the eyewall region than in the 

GFS analysis, with roughly vertical isotachs in the eyewall and a maximum wind of over 48 m s
-

1
 (Fig. 6c, d). The maximum temperature anomaly is about 6 ºC and is located at 6-8 km above 

the surface; a structure that is more consistent with typical observed TC structures. In VrP10W2h, 

the structures of horizontal winds and temperature anomaly are similar to those of VrW2h, 

except that the region with wind speeds exceeding 42 m s
-1
 is about 2.5 km deeper than in 

VrW2h (Fig. 6g, h). In general, the assimilation of Vr and/or MSLP data significantly enhanced 

the axisymmetric vortex circulation and warm core structure. The vortex structure obtained by 

assimilating Vr data is more realistic than assimilating MSLP only and assimilating both Vr and 

MSLP data gives the strongest hurricane vortex.  

 

3.4 Sensitivity to model variable updating in EnKF 

During the assimilation of MSLP, the model state variables pressure, wind, and potential 

temperature are updated. We examine here how the impacts of state variable updating evolve 

with time, which will help us understand which model variables are most important in 
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maintaining the storm strength during the analysis-forecast cycles and how the model adjusts to 

the updated fields in the subsequent forecast. Towards this goal, a set of experiments is 

performed based on experiment P60W2h. In these experiments, MSLP assimilation is performed 

at 0500 UTC using the ensemble forecast background of P60W2h, but each experiment updates 

only a single or a subset of state variables. A 20 minute forecast is launched from the ensemble 

mean analysis from each of the experiments, which will be compared to the forecast launched 

from the ensemble mean forecast at 0500 UTC, essentially from the analysis background without 

further DA. The model variable updated by MSLP is indicated by the experiment name: e.g., 

ExpT only updates potential temperature while ExpWTP updates wind, potential temperature 

(q), and pressure. The minimum value of surface pressure difference between the control forecast 

and the forecasts with MSLP DA (Surface pressureforecast with DA- Surface pressureforercast without DA ) 

is used as a ñpressure impact index (PI)ò to measure the impact of DA on the model surface 

pressure. A more negative PI indicates a greater impact; i.e., the forecast storm is stronger. 

The PIs of the experiments are plotted in Fig. 7 at 0, 10, and 20 minutes after the DA time. 

At the initial time (0500 UTC), the PIs of the experiments whose pressure is updated by the 

MSLP data (ExpP, ExpTP and ExpWTP) are all about -14.3 hPa, but are zero in all other 

experiments (since the pressure is not updated). After 10 minutes of forecast, the large impact on 

pressure in ExpP is decreased to a mere -0.3 hPa, and to -0.15 hPa by 20 minutes, indicating that 

the initial impact from MSLP DA is almost completely lost in this case. Clearly updating 

pressure only when assimilating MSLP data is ineffective; this is consistent with the results of 

Zhao et al. (2012) where univariate analysis of the MSLP data using the 3DVAR method was 

also found ineffective. 

The PIs of ExpW and ExpT increase from zero at the initial time to -5.1 and -2.3 hPa, 

respectively, at 10 minutes of forecast, clearly due to the adjustment of model pressure to the 

wind or potential temperature field updated by the MSLP data. Updating the model wind field 

appears to have a larger impact than updating q on the forecast pressure. By 20 minutes, the PI of 

ExpW increases slightly (more negative) while that of ExpT decreases slightly, but the changes 

are less than 1 hPa in both cases. Updating both wind and q in ExpWT leads to a more negative 

PI during the forecast than updating wind or q individually, giving PIs of -6.7 and -6.9 hPa at 10 

and 20 minutes of forecast, respectively, and these values are very close to those of ExpWTP.  At 

the same time, the PIs of ExpTP and ExpT are very similar at the corresponding times (Fig. 7) 

while the PIs of ExpWP (not shown) are very similar to those of ExpW. These results indicate 

that even though MSLP contains pressure information, the updating of wind and temperature 

fields when using the data is much more important than updating pressure itself; in fact, updating 

pressure itself has little impact on the subsequent forecasting with or without updating other state 

variables; the improvement to the analyzed MSLP is in a sense superficial in absence of support 

of other state variables.  In the model, the pressure field adjusts quickly to the temperature and 

wind fields, apparently through hydrostatic and gradient wind balance adjustments. Such results 

also point to us the importance of cross-variable covariance derived from the ensemble, which is 

responsible for the EnKF updating of state variables rather than pressure when assimilating the 

MSLP data. 
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4. Impact on forecast 

4.1 Intensity forecast 

The 18-hour forecast MSLPs for all DA experiments are plotted in Fig. 8, along with 

those of CNTL forecast, and they are compared to the best track data. The best track MSLP is 

951 hPa at 0600 UTC September 13, one hour before landfall; after landfall the MSLP gradually 

increases, and it is 980 hPa by 0000 UTC September 14 (Fig. 8). Overall, all of the DA 

experiments predict lower MSLPs than CNTL before 1800 UTC. The slower weakening between 

1500 to 2100 UTC compared to the best track might be a result of model errors (DX12), leading 

to somewhat too strong storms after 1800 UTC. 

The MSLP of P60W2h at 0600 UTC is around 955 hPa, slightly lower than that of 

VrW2h (Fig. 8a). However, the MSLP of P60W2h increases much faster than the best track and 

VrW2h during the first 3-hour forecast, and is 5 hPa higher than VrW2h at 0900 UTC. During 

the following forecast, the MSLPs of P60W2h are always higher than those of VrW2h. The 

MSLP of VrP60W2h is 2 hPa lower than that of VrW2h at 0600 UTC, but become similar 

afterwards. When Z is assimilated in addition in ZP60W2h, the final analyzed MSLP is slightly 

lower than in P60W2h but the predicted MSLPs become similar after 0900 UTC. 

With MSLP data assimilated every 10 minutes in P10W2h (Fig. 8c), the final analyzed 

MSLP is quite close to the best track. The predicted MSLP is similar to that of VrW2h after 0600 

UTC, and is higher than the best track before 1800 UTC. All three experiments assimilating 

MSLP at 10 minute intervals are quite similar to one another, with differences in MSLP being 

always smaller than 2 hPa. Starting with a slightly higher MSLP than the other two at 0600 UTC, 

the intensity forecast of VrP10W2h during the 18-hour forecast is generally the best among all 

the DA experiments conducted in this study in terms of MSLP.  

It appears that the assimilation of MSLP at 60 minute intervals is insufficient to establish 

a strong, well-balanced hurricane. MSLP error in P60W2h increases quickly during the first 

several forecast hours. More frequent MSLP assimilation at 10 minute intervals leads to a more 

balanced vortex and slower error growth during subsequent forecast.   

The assimilation of MSLP at 10 and 60 minute intervals in addition to Z data 

significantly improves the intensity forecast of ZW2h. Since the MSLP forecast of VrW2h is 

already close to the best track, frequent MSLP assimilation at 10 minute intervals is necessary to 

achieve further noticeable improvement.  

The maximum surface winds of forecasts in the experiments are plotted in Fig. 8b and 

Fig. 8d, and are compared to those of best track. At 0600 UTC, the analyzed maximum winds of 

the experiments assimilating radar and/or MSLP data are all stronger than those of CNTL, except 

that of ZW2h which is similar. Experiments assimilating both Vr and MSLP (i.e., VrP60W2h in 

Fig. 8b and VrP10W2h in Fig. 8d) always have the strongest analyzed maximum wind, 

indicating the benefit of assimilating both Vr and MSLP observations. Although the analyzed 

maximum winds in P10W2h and ZP10W2h are weaker than those in P60W2h and ZP60W2h, 

respectively, the forecasts of P10W2h and ZP10W2h at 0900 UTC show stronger winds than 

their counterparts assimilating MSLP at 60 minute intervals. This is more or less consistent with 

the MSLP forecasts, where the assimilation of MSLP at 10 minute intervals helps to build up a 

more dynamically-balanced vortex, and the impact from DA lasts longer than when MSLP is 

assimilated at 60 minute intervals. Generally, the maximum surface wind forecasts are close to 

one another in all experiments after 0900 UTC. We note here that the maximum wind can be 

affected by localized convective activities while the minimum sea-level pressure tends to be a 
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system-integrated quantity that tends to be a more reliable measure of the vortex intensity (Zhu; 

Zhang 2006).    

In conclusion, with frequent assimilation of MSLP data in a cloud-resolving model, 

hurricane intensity forecast can be improved; such improvement was not clearly achieved in 

Hamill et al. (2011) when assimilating the TCVital data into a coarser resolution global model at 

a much lower frequency. The high assimilation frequency is necessary to achieve sustained 

impacts. 

MSLP assimilation at 10 minute intervals outperforms Vr assimilation in terms of the 

MSLP forecast. The MSLP parameter measures mainly the overall vortex intensity, but does not 

necessarily represent well sub-vortex convective-scale structures in a hurricane. For this reason, 

we further verify the wind forecasts of CNTL, VrW2h, P10W2h, and VrP10W2h against the Vr 

observations from the two coastal radars from 0600 through 0900 UTC when Ike was near the 

coast. The root-mean-square differences (rmsd) between model predicted and observed Vr are 

plotted in Fig. 9. Such calculations were limited to regions where observed reflectivity exceeds 

10 dBZ. 

All DA experiments show clear improvement over CNTL when verified against Vr (Fig. 

9). The rmsd against KHGX radar in CNTL grows rapidly partly because the vortex of CNTL 

moves slower than the best track and other DA experiments from 0600 through 0900 UTC (Fig. 

10a). The rmsd values for VrW2h are 34% and 60% of those for P10W2h at 0600 UTC when 

verified against KHGX and KLCH radars, respectively (Fig. 9). The VrW2h analyses fit the 

observed Vr data reasonably well, whereas the analyzed winds assimilating MSLP data only 

match the observed Vr data much worse. After 2 hours of forecast, the rmsd values of VrW2h 

and P10W2h become closer as the rmsd of  P10W2h descreases with time while that of VrW2h 

increases with time; their differences are less than 1 m s
-1 

by three hours for both radars.
 
 These 

indicate that wind errors are reduced during the forecast as the wind field adjusts to improved 

vortex due to MSLP DA, while wind errors that were reduced by the assimilation of Vr data 

increase as the forecast error grows in general.  

In a short range forecast (~3 hours in our study), the assimilation of radar observations 

appears to have an advantage over the assimilation of MSLP observations on the convective 

scale (as observed by radar data). Combining Vr and MSLP data clearly gives the best results. 

4.2 Track forecast 

Fig. 10 shows the predicted tracks, along with the best track and average track errors, of 

18-hour forecasts for selected experiments. The forecast vortex center positions are determined 

by the minimum sea-level pressure and are plotted every 3 hours. Despite having a small initial 

position error of just 7 km, CNTL follows the westernmost track during the 18-hour forecast, 

diverging from all of the DA experiments and the best track (Fig. 10a). The final analyzed vortex 

centers in the experiments assimilating MSLP are generally closer to the best track than those of 

CNTL and the experiments assimilating only radar observations. The errors in P10W2h, 

VrP10W2h, and ZP10W2h are 4, 4 and 2.6 km, respectively, comparable to (or even smaller 

than) the horizontal grid spacing of the model. During the 18-hour forecast, the tracks of the 

experiments assimilating MSLP are similar to each other, except for ZP10W2h which follows a 

more westward path at 1800 UTC.  

Averaged over the 18-hour forecast period, the track errors of P60W2h and P10W2h are 

generally comparable to those of VrW2h (Fig. 10b); the mean error of P60W2h is 2 km larger 

than that of P10W2h. The track errors of all these three experiments are significantly smaller 

than the 41 km track error of CNTL (not shown in Fig. 10b). The track errors of VrP60W2h and 
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VrP10W2h are both less than 10 km, smaller than the 12 km error of VrW2h. The track errors 

ZP60W2h and ZP10W2h are only 60% of the error of ZW2h. When MSLP is assimilated with 

radar observations, the interval of MSLP assimilation (10 vs. 60 minutes) does not have a strong 

impact on the track; the difference is always smaller than 1 km. In general, most of the 

experiments assimilating MSLP observations have average track errors of less than 10 km. 

Unlike intensity forecast, the track forecast appears to be relatively insensitive to the 

MSLP assimilation interval. This may be because the initial position errors can be quite 

effectively corrected in a few MSLP DA cycles, while intensity improvement requires more 

frequent assimilation cycles to ónudgeô and establish well balanced vortex and sustainable 

intensity.             

5.  Sensitivity of intensity forecast to assimilation window length 

In the previous sections, we have shown that during the early analysis and forecast cycles 

the MSLP error grows much faster in P10W2h than in VrW2h although the error growth rate 

decreases with time in P10W2h (Fig. 4). Clearly, many MSLP DA cycles help establish a more 

balanced vortex to slow down the error growth in surface pressure. In this section, we further 

examine the impact of assimilation window length. Instead of the 2 hour assimilation window 

used in previous experiments, 1 hour or 30 min assimilation window is used, all ending at 0600 

UTC, and all of them assimilate MSLP and/or Vr data at 10 minute intervals. Fig. 11 shows 

predicted MSLPs for the experiments using the three different window lengths, as compared to 

the CNTL forecast and best track data. 

With a 30 minute window in P10W30m, the analyzed MSLP at 0600 UTC is 953 hPa, 

close to the 950 of best track; it increases by 7 hPa in the first 3 hours of forecast, the largest 

among all experiments (Fig. 11). In VrW30m, even though the final analyzed MSLP is about 3 

hPa higher at 0600 UTC than that in P10W30m, the forecast MSLP at 0900 UTC is actually a 

couple of hPa lower than in P10W30m, and remains lower throughout the 18 hour forecast. The 

assimilation of both MSLP and Vr in VrP10W30m results in a MSLP analysis of about 951 hPa, 

and the forecast values remain a few hPa lower than those in P10W30m and VrW30m, closer to 

the best track values; clearly assimilating both Vr and MSLP data gives better intensity forecasts 

than assimilating one of them.  

When the assimilation window is extended to one hour, the general behaviors of the three 

experiments are similar to the 30 minute case, except that the MSLP errors are further reduced 

by 1-3 hPa in the analyses and forecasts. In comparison, when a 2-hour assimilation window is 

used, P10W2h actually outperforms VrW2h, analyzing and predicting lower MSLPs that are in 

better agreement with the best track. VrP10W2h performs slightly better than P10W2h in the 

MSLP forecast.  

Compared to millions of Vr observations available, there is only one MSLP observation 

each analysis time. The above results indicate that when using too short assimilation windows, 

the assimilation of a very limited number of MSLP data is not able to establish a balanced storm 

as well as millions of Vr observations can, affecting the surface pressure prediction. The 

differences in the MSLP forecasts among the three Vr assimilation experiments windows are 

much smaller, apparently due to the large number of Vr observations, while the forecasts 

assimilating MSLP data are more sensitive to the window length (Fig. 11). For this particular 

case, 2 hours appear sufficiently long for the MSLP assimilation performed every 10 minutes to 

produce intensity forecasts comparable to assimilating Vr data.    
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Assimilating both MSLP and Vr always outperforms the assimilation of one of 

observation types, regardless the window length. The improvement is larger for shorter windows.    

6. Summary and conclusions 

Best track minimum sea level pressure (MSLP) data are treated as surface pressure 

measurements at TC vortex center and assimilated using an ensemble Kalman filter (EnKF) at a 

convection-permitting resolution. The study was partly motivated by Hamill et al. (2011) who 

assimilated TCVital data, including the best track MSLP, into a global forecast model using 

EnKF; their results showed improved central pressure analyses but the intensity forecast 

improvement was quickly lost in the subsequent forecasts. The low assimilation frequency and 

coarse model resolution were believed to be the primary reason. In this study, interpolated MSLP 

data are assimilated at 60 or 10 minute intervals for a period of 30 minutes, 1 hour or 2 hours for 

Hurricane Ike (2008) before it made landfall. The assimilation and forecast experiments used the 

ARPS model and its EnKF DA system at 4 km grid spacing. In addition, the relative impacts of 

MSLP versus of radar data are examined, by assimilating radial velocity Vr and/or reflectivity Z 

data from two coastal operational radars individually or together with the MSLP data. The radar 

data are always assimilated at 10 minute intervals; the procedure for assimilating radar data using 

EnKF follows Dong and Xue (2012) exactly.  

The first set of experiments examined MSLP DA over a 2-hour window, at 60 or 10 

minute intervals. The analysis of MSLP is shown to enhance the hurricane circulation and its 

warm core structure and it is achieved through cross-variable covariance estimated by the EnKF. 

Through sensitivity experiments, it is shown that the updating of wind fields when assimilating 

MSLP data has a more sustainable impact on the intensity forecast than updating temperature 

while updating pressure by MSLP has little sustained impact; the model pressure tends to quickly 

respond to the wind and temperature fields through hydrostatic and gradient wind adjustments, 

not the other way around. This further highlights the importance of flow-dependent cross-

covariance that allows for dynamically consistent multi-variate analysis of the TC vortex.  

The final analyzed TC vortex is shallower, and its structures are smoother when 

assimilating MSLP data only while radar data provide more convective-scale structures; this is 

not surprising because the dense velocity data contain much more convective-scale information 

while the  smaller covariance localization radii used for radar data also help. The analyzed warm 

core in the former case is also placed too low in the eye region. When MSLP and Vr data are 

assimilated together, analyses that have better overall vortex intensity and convective-scale 

structures are obtained. 

With 10 minute assimilation intervals, the assimilation of MSLP data alone is able to 

keep the analyzed MSLP lower than that obtained by assimilating Vr data only, but the MSLP 

forecast error growth is faster than the Vr case, apparently because of the adjustment of the 

pressure field towards the less well-analyzed wind and temperature fields. In the case of Vr 

assimilation, the initially too high MSLP is decreased during the forecast periods, through 

pressure adjustment towards the better analyzed wind fields. The analyzed MSLP during the later 

cycles of the 2 hour assimilation window is very close to the best track MSLP in the MSLP-

assimilation case while that in the Vr-only case remains a few hPa higher. When both Vr and 

MSLP are assimilated, errors in both analyzed and forecast MSLPs remain very low in the later 

cycles. 

A 60-minute interval when assimilating the MSLP data alone proves insufficient to 

establish a well-balanced hurricane vortex in terms of MSLP forecast; the MSLP in the early 
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forecast hours increases much more quickly than the best track (the hurricane was weakening at 

this stage) while the MSLP error in the experiment assimilating Vr data alone (at 10 minutes 

intervals) grows slower (even though the final analyzed MSLP had slightly larger error). Again 

combining MSLP and Vr data produced the lowest error in the MSLP analysis and forecast. 

Assimilating reflectivity data alone was able to reduce the MSLP error by only one third in the 

final analysis relative to the no DA case.  

Using 10 minute MSLP assimilation intervals led to much better MSLP analyses and 

forecasts than that using 60 minute intervals, resulting in lower final MSLP analysis and reduced 

initial MSLP forecast error growth, and outperforming the forecasts assimilating Vr or Z only. 

Assimilating MSLP in addition to Z data significantly improves the MSLP analysis and forecast 

but the improvement in addition to Vr data is much less, because the assimilation of Z data is not 

very effective at decreasing the MSLP error.  

The forecasts were also verified against Vr observations for the first 3 hours of forecast 

when hurricane Ike was near the coast. Not surprisingly, the much more voluminous Vr produce 

more convective-scale structures than MSLP data and the improved fit of the forecast to Vr 

observations due to the assimilation of Vr data lasts throughout the 3 hours of forecast. The fit to 

the Vr observations improves over time in the MSLP-only case but the mis-fit remains slightly 

(about 0.5 m s
-1
) larger than the Vr case by 3 hours.  

The assimilation of MSLP also improves the track analysis and forecast. Average 18-

hour track forecast errors with MSLP assimilation are around 11-13 km, comparable to those 

obtained using Vr assimilation. Assimilation of MSLP together with Vr or Z improves track 

forecast more than the assimilation of Vr or Z only.  

Sensitivity of the intensity forecast to the length of the MSLP and/or Vr assimilation 

window is also tested. Using shorter assimilation windows of 30 minutes or 1 hour and 10 

minute assimilation intervals, MSLP forecast with Vr assimilation outperforms the forecast with 

MSLP assimilation. Using a 2 hour window, the opposite is true. For shorter assimilation 

windows, combining Vr and MSLP gives even more benefits. 

In summary, the assimilation of MSLP is able to improve hurricane Ike analyses and 

forecasts within a cloud-resolving model, mostly through improvements to the model wind and 

temperature fields, via cross-covariance of surface pressure with wind and temperature in the 

EnKF. Because of the very limited pieces of information in the MSLP observations, frequent 

analyses are necessary to establish a balanced hurricane vortex having slow intensity error 

growth. Compared to Vr data, MSLP data have less ability in producing convective-scale 

structures (as verified against Vr observations) and the analyzed warm-core structure is not very 

realistic. The best results are obtained when Vr and MSLP data are assimilated together. 

In our case, the center position of Ike never deviates too far from the best track, thus the 

assimilation of MSLP as a regular pressure observation located at the best track position is 

effective. Such treatment can be problematic if the simulated TC center is far from the best track. 

The assimilation of TC position and intensity separately (Torn 2010; Wu et al. 2010) provides a 

possible solution to this problem. 

In order to utilize ground-based radar data, we assimilated MSLP shortly before Ike made 

landfall. For a rapidly intensifying TC over the ocean, the conclusion about the impact of MSLP 

assimilation may differ. Further studies with more TCs that are in various stages of development 

are needed to more completely understand the impacts of MSLP assimilation. Other available 

observations should also be included in the assimilation to obtain more comprehensive impacts.  

These can be topics for future studies.  
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List of figures: 

Fig. 1. The model grid, the best track (denoted by black dots) and radar coverage for Ike. The 

positions of two radars are denoted by black squares. The range circles of Houston-

Gavelston, Texas (KHGX) and Lake Charles, Louisiana (KLCH) radars are for a 

maximum range of 460 km. Best track covers 0300 September 13 to 0000 September 14 

and hurricane locations are plotted every 3 hours. 

Fig. 2. Schematics showing the flowcharts for experiments that (a) assimilate radar and MSLP 

data every 10 minutes from two hours, and (b) radar data every 10 minutes but MSLP 

data every 60 minutes for 2 hours, and (c) reference forecast NoDA that did not 

assimilate any radar or MSLP data. The downward arrows denote MSLP DA times and 

the upward dashed arrows denote radar DA times. Ensemble forecasts are shown as thick 

horizontal arrows while single deterministic forecasts are shown as thin horizontal arrows. 

The ensemble DA experiments contain a 4-hour single spinup forecast period starting 

from GFS analysis at 18 UTC, September 12 2008, which is followed by a 6-hour 

ensemble spinup period with mesoscale perturbations added at 22 UTC, September 12. 

Convective-scale perturbations are added at 04 UTC, September 13, the beginning time 

to EnKF DA cycles. A single deterministic forecast starts from ensemble mean analysis 

at 06 UTC, September 13, the ending time of EnKF DA cycles. 

Fig. 3. Increments of (a) horizontal wind component and pressure (every 200 Pa) at 1 km, (b) 

potential temperature (every 1 K) at 1 km, (c) vertical velocity w (every 0.2 m s
-1
) in the 

east-west cross-section along C-D in (a), and (d) potential temperature in the same 

vertical cross-section as (c), at 0500 UTC September 13 of experiment P60W2h. A and B 

denote the position of the background vortex center and the position of the MSLP 

observation, respectively. The background wind vectors are also plotted in (c). 

Fig. 4. The analyzed and forecast MSLP during the assimilation cycles of different experiments, 

compared to the best track. 

Fig. 5. The analyzed surface horizontal wind speed (shaded) and sea level pressure at 0600 UTC 

September 13 from (a) the GFS analysis, (c) VrW2h, (e) P10W2h and (g) VrP10W2h. (b), 

(d), (f) and (h) show the east-west cross-section of horizontal wind and temperature 

through the individual vortex center of each experiment. 

Fig. 6. Azimuthally averaged radius-height plots of horizontal winds from (a) the GFS analysis, 

(c) VrW2h, (e) P10W2h and (g) VrP10W2h. (b), (d), (f) and (h) show the radius-height 

plots of temperature anomaly of each experiment. 

Fig. 7. Pressure impact index (in Pa) with time (PI; see section 3.4 for explanation) for 

experiments updating various model variables. 

Fig. 8. Forecast minimum sea level pressures (a and c) and surface maximum wind (b and d) 

with time, compared to the observed best track and CNTL. 

Fig. 9. Root-mean-square differences between observed and forecast Vr for experiments CNTL, 

VrW2h, P10W2h and VrP10W2H, calculated against radar (a) KHGX and (b) KLCH. 

Fig. 10. (a) Forecast TC center (determined by MSLP position) every 3 hours from 0600 UTC 

September 13 to 0000 UTC September 14. Note the map is stretched to highlight the 

difference between the tracks and (b) 18-hour average track errors. The average track 

error of CNTL is 40 km and not shown here. 

Fig. 11. Forecast minimum sea level pressure from sensitivity experiments varying the 

assimilation window length, compared to the observed best track and CNTL. 
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Table 1. List of experiments assimilating MSLP and/or radar observations plus the control 

experiment. 

 

Experiment 

Assimilated observation 

type  

MSLP DA cycle 

interval  

Assimilation 

window length 

CNTL None N.A. N.A. 

P60W2h MSLP 60 min. 2 hours 

P10W2h MSLP 10 min. 2 hours 

VrW2h Vr N/A 2 hours 

VrP60W2h Vr & MSLP 60 min. 2 hours 

VrP10W2h Vr & MSLP 10 min. 2 hours 

ZW2h Z N/A 2 hours 

ZP60W2h Z & MSLP 60 min. 2 hours 

ZP10W2h Z & MSLP 10 min. 2 hours 

    

P10W1h MSLP 10 min. 1 hour 

VrW1h Vr N/A 1 hour 

VrP10W1h Vr & MSLP 10 min. 1 hour 

P10W30m MSLP 10 min. 30 min. 

VrW30m Vr N/A 30 min. 

VrP10W30m Vr & MSLP 10 min. 30 min. 
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Fig. 1. The model grid, the best track (denoted by black dots) and radar coverage for Ike. The 

positions of two radars are denoted by black squares. The range circles of Houston-Gavelston, 

Texas (KHGX) and Lake Charles, Louisiana (KLCH) radars are for a maximum range of 460 km. 

Best track covers 0300 September 13 to 0000 September 14 and hurricane locations are plotted 

every 3 hours. 
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Fig. 2. Schematics showing the flowcharts for experiments that (a) assimilate radar and MSLP 

data every 10 minutes from two hours, and (b) radar data every 10 minutes but MSLP data every 

60 minutes for 2 hours, and (c) reference forecast NoDA that did not assimilate any radar or 

MSLP data. The downward arrows denote MSLP DA times and the upward dashed arrows 

denote radar DA times. Ensemble forecasts are shown as thick horizontal arrows while single 

deterministic forecasts are shown as thin horizontal arrows. The ensemble DA experiments 

contain a 4-hour single spinup forecast period starting from GFS analysis at 18 UTC, September 

12 2008, which is followed by a 6-hour ensemble spinup period with mesoscale perturbations 

added at 22 UTC, September 12. Convective-scale perturbations are added at 04 UTC, 

September 13, the beginning time to EnKF DA cycles. A single deterministic forecast starts from 

ensemble mean analysis at 06 UTC, September 13, the ending time of EnKF DA cycles. 
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Fig. 3. Increments of (a) horizontal wind component and pressure (every 200 Pa) at 1 km, (b) 

potential temperature (every 1 K) at 1 km, (c) vertical velocity w (every 0.2 m s
-1
) in the east-

west cross-section along C-D in (a), and (d) potential temperature in the same vertical cross-

section as (c), at 0500 UTC September 13 of experiment P60W2h. A and B denote the position 

of the background vortex center and the position of the MSLP observation, respectively. The 

background wind vectors are also plotted in (c). 
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Fig. 4. The analyzed and forecast MSLP during the assimilation cycles of different experiments, 

compared to the best track.  
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Fig. 5. The analyzed surface horizontal wind speed (shaded) and sea level pressure at 0600 UTC 

September 13 from (a) the GFS analysis, (c) VrW2h, (e) P10W2h and (g) VrP10W2h. (b), (d), (f) 

and (h) show the east-west cross-section of horizontal wind and temperature through the 

individual vortex center of each experiment.  
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Fig. 6. Azimuthally averaged radius-height plots of horizontal winds from (a) the GFS analysis, 

(c) VrW2h, (e) P10W2h and (g) VrP10W2h. (b), (d), (f) and (h) show the radius-height plots of 

temperature anomaly of each experiment.  

 












